-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain_FrameAttention_tomse2.py
472 lines (374 loc) · 17.8 KB
/
Train_FrameAttention_tomse2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
from __future__ import print_function
seed = 4603
print('random seed: {}'.format(seed))
import numpy as np
import random
import torch
import torch.backends.cudnn as cudnn
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.deterministic = True
import argparse
import os
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
from Code_tomse2 import load_materials, util, Model_Parts, pytorchtools
import time
from datetime import datetime
import pdb
parser = argparse.ArgumentParser(description='PyTorch CelebA Training')
parser.add_argument('--epochs', default=500, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--lr', '--learning-rate', default=1e-5, type=float,
metavar='LR', help='initial learning rate (default: 1e-5)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--pf', '--print-freq', default=200, type=int,
metavar='N', help='print frequency (default: 200)')
parser.add_argument('-e', '--evaluate', default=False, dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--is_test', default=True, dest='is_test',
help='testing when is traing (default: True)')
parser.add_argument('--is_pretreat', default=True, dest='is_pretreat',
help='pretreating when is traing (default: False)')
parser.add_argument('--accumulation_step', default=1, type=int, metavar='M',
help='accumulation_step')
parser.add_argument('--loss_alpha', default=0.1, type=float,
help='adjust loss for crossentrophy')
parser.add_argument('--num_classes', default=10, type=int,
help='number of categorical classes')
parser.add_argument('--first_channel', default=64, type=int,
help='number of channel in first convolution layer in resnet')
parser.add_argument('--non_local_pos', default=3, type=int,
help='the position to add non_local block')
parser.add_argument('--batch_size', default=16, type=int,
help='batch size')
parser.add_argument('--arg_rootTrain', default=None, type=str,
help='the path of train sample ')
parser.add_argument('--arg_rootEval', default=None, type=str,
help='the path of eval sample ')
best_prec_total1 = 10
best_prec_mse1 = 10
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
'''MyNote '''
def abs_double(input, target):
return abs(input - target)
class Abs(nn.Module):
def __init__(self):
super(Abs, self).__init__()
def forward(self,input,target):
return abs_double(input, target)
#Label smoothing
class CrossEntropyLoss_label_smooth(nn.Module):
def __init__(self, num_classes=10, smoothing=0.1):
super(CrossEntropyLoss_label_smooth, self).__init__()
self.num_classes = num_classes
self.smoothing = smoothing
def forward(self, outputs, targets):
N = targets.size(0)
# torch.Size([8, 10])
smoothed_labels = torch.full(size=(N, self.num_classes), fill_value=self.smoothing / (self.num_classes - 1)).to(device)
targets = targets.data
smoothed_labels.scatter_(dim=1, index=targets.unsqueeze(dim=1), value=1 - self.smoothing)
log_prob = nn.functional.log_softmax(outputs, dim=1)
loss = - torch.sum(log_prob * smoothed_labels) / N
return loss
class CrossEntropyLoss_bootstraps(nn.Module):
def __init__(self, num_classes=10, weight_lmda=0.5):
super(CrossEntropyLoss_bootstraps, self).__init__()
self.num_classes = num_classes
self.weight_lmda = weight_lmda
def forward(self, outputs, targets, epoch):
N = targets.size(0)
targets_weight = (1 - epoch / args.epochs) ** self.weight_lmda
# get predicted labels
_, pred = outputs.topk(1, 1, largest=True, sorted=True)
log_prob = nn.functional.log_softmax(outputs, dim=1)
# onehot index matrix of targets and pred
onehot_targets = torch.zeros(size=(N, self.num_classes)).to(device)
targets = targets.data
onehot_targets.scatter_(dim=1, index=targets.unsqueeze(dim=1), value=1)
onehot_pred = torch.zeros(size=(N, self.num_classes)).to(device)
onehot_pred.scatter_(dim=1, index=pred, value=1)
weight_labels = targets_weight * onehot_targets + (1 - targets_weight) * onehot_pred
loss = - torch.sum(log_prob * weight_labels) / N
return loss
def load_model(dir_model):
MSEcriterion = nn.MSELoss()
model = Model_Parts.FullModal_VisualFeatureAttention(num_class=1, feature_dim=512, at_type='nonLocal')
model = Model_Parts.LoadParameter(model, dir_model)
model1 = torch.nn.DataParallel(Model_Parts.FullModel_Loss(model, MSEcriterion))
return model1
def get_path(lr, wd):
save_name = datetime.now().strftime('%m-%d_%H-%M')
folder = './model/' + save_name + '_' + 'lr'+str(lr)+'wd'+str(wd)
if os.path.exists(folder):
print("There is the folder")
folder = folder + '_c'
os.mkdir(folder)
else:
os.mkdir(folder)
return folder
new_folder = get_path(args.lr, args.weight_decay)
early_stopping = pytorchtools.EarlyStopping(patience=20, path=new_folder+'/checkpoint.pt')
def main():
global args, best_prec_total1, best_prec_mse1, device
accumulation_step = args.accumulation_step
print('epochs', args.epochs)
print('learning rate:', args.lr)
print('weight decay:', args.weight_decay)
print('accumulation_step:', accumulation_step)
print('loss alpha:', args.loss_alpha)
print('num classes:', args.num_classes)
print('first_channel', args.first_channel)
print('non_local_pos', args.non_local_pos)
print('batch_size:', args.batch_size)
print('is_pretreat:', args.is_pretreat)
# save model superparameter
with open(os.path.join(new_folder, "hyperparam.txt"), "a+") as f:
f.write('epochs' + ' ' + str(args.epochs) + '\n')
f.write('learning rate' + ' ' + str(args.lr) + '\n')
f.write('weight decay' + ' ' + str(args.weight_decay) + '\n')
f.write('accumulation step' + ' ' + str(accumulation_step) + '\n')
f.write('loss alpha' + ' ' + str(args.loss_alpha) + '\n')
f.write('num classes' + ' ' + str(args.num_classes) + '\n')
f.write('first channel' + ' ' + str(args.first_channel) + '\n')
f.write('non local pos' + ' ' + str(args.non_local_pos) + '\n')
f.write('batch size' + ' ' + str(args.batch_size) + '\n')
f.write('is pretreat' + ' ' + str(args.is_pretreat) + '\n')
dir_model = r"./model/epoch51_69.0"
''' Load data '''
if args.arg_rootTrain == None:
arg_listTrain = r'./Data/375Data-Train.txt'
else:
arg_listTrain = args.arg_rootTrain
arg_rootTrain = r'/home/biai/BIAI/mood/Data-S375-align'
if args.arg_rootEval == None:
arg_listeval = r'./Data/375Data-Eval.txt'
else:
arg_listeval = args.arg_rootEval
arg_rooteval = r'/home/biai/BIAI/mood/Data-S375-align'
#arg_rootTrain = r'/home/biai/BIAI/mood/Data-S375-align'
#arg_listTrain = r'./Data/375Data-Train.txt'
#arg_rooteval = r'/home/biai/BIAI/mood/Data-S375-align'
#arg_listeval = r'./Data/375Data-Eval.txt'
# arg_rootTrain = r'/home/biai/BIAI/mood/Data-S375-cut224/'
# arg_listTrain = r'./Data/376Data-Train.txt'
# arg_rooteval = r'/home/biai/BIAI/mood/Data-S375-cut224/'
# arg_listeval = r'./Data/376Data-Eval.txt'
print(arg_listTrain,arg_listeval)
train_loader, val_loader = load_materials.LoadVideoAttention(arg_rootTrain, arg_listTrain, arg_rooteval,
arg_listeval, batch_size=args.batch_size)
''' Eval '''
print('args.evaluate', args.evaluate)
loopTest = False
if args.evaluate:
if loopTest == True:
dir_path = r"F:\Documents\biai-release_test\model"
for mod in os.listdir(dir_path):
print('-'*10, mod)
dir_model = dir_path + "/" + mod
model = load_model(dir_model)
validate(val_loader, model)
else:
model = load_model(dir_model)
validate(val_loader, model)
return
first_channel = args.first_channel
feature_dim = first_channel * 4
''' Load model '''
criterion1 = nn.CrossEntropyLoss()
#criterion1 = CrossEntropyLoss_label_smooth(num_classes=10, smoothing=0.1)
# criterion1 = CrossEntropyLoss_bootstraps(num_classes=args.num_classes, weight_lmda=0.5)
criterion2 = nn.MSELoss()
model = Model_Parts.FullModal_VisualFeatureAttention(num_class=args.num_classes, feature_dim=feature_dim, non_local_pos=args.non_local_pos,
first_channel=first_channel)
if args.is_pretreat:
print("pretreat.............")
model = Model_Parts.LoadParameter(model, dir_model)
model = torch.nn.DataParallel(model)
''' Loss & Optimizer '''
# criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
weight_decay=args.weight_decay)
# optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
# momentum=args.momentum,
# weight_decay=args.weight_decay)
cudnn.benchmark = True
''' Train & Eval '''
# print('args.evaluate', args.evaluate)
# if args.evaluate:
# validate(val_loader, model)
# return
for epoch in range(args.epochs):
util.adjust_learning_rate(optimizer, epoch, args.lr, args.epochs)
print('...... Beginning Train epoch: {} ......'.format(epoch))
totalloss, mseloss, ceacc = train(train_loader, model, criterion1, criterion2, args.loss_alpha, optimizer, epoch, accumulation_step)
print('...... Beginning Test epoch: {} ......'.format(epoch))
if args.is_test :
totalloss1, mseloss1, ceacc1 = validate(val_loader, model, criterion1, criterion2, args.loss_alpha)
else:
totalloss1, mseloss1, ceacc1 = totalloss, mseloss, ceacc
is_better = totalloss1 < best_prec_total1 and mseloss1 < best_prec_mse1
if epoch % 100 == 99:
util.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'totalloss': totalloss1,
'mseloss': mseloss1,
'acc': ceacc1,
}, path=new_folder)
if is_better:
print('better model!')
best_prec_total1 = min(totalloss1, best_prec_total1)
best_prec_mse1 = min(mseloss1, best_prec_mse1)
util.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'totalloss': totalloss1,
'mseloss': mseloss1,
'acc': ceacc1,
}, path=new_folder)
else:
print('Model too bad & not save')
with open(os.path.join(new_folder, "result.txt"), "a+") as f:
f.write(str(round(totalloss,3))+" "+str(round(totalloss1,3))+" "+str(round(mseloss,3))+" "+str(round(mseloss1,3))+" "+str(round(ceacc,3))+" "+str(round(ceacc1,3)))
f.write("\n")
f.flush()
if early_stopping.early_stop:
print("Early stopping")
break
util.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'totalloss': totalloss1,
'mseloss': mseloss1,
'acc': ceacc1,
}, path=new_folder)
def train(train_loader, model, criterion1, criterion2, loss_alpha, optimizer, epoch, accumulation_step):
global record_
losses = util.AverageMeter()
data_time = util.AverageMeter()
accuracies = util.AverageMeter()
# switch to train mode
model.train()
num_of_data = 0
end = time.time()
score_list = []
for batch_idx, (input_image, sample) in enumerate(train_loader):
data_time.update(time.time() - end)
sample_catego = util.label_to_categorical(sample, args.num_classes)
sample = sample.to(device)
sample_catego = sample_catego.to(device)
input_var = torch.autograd.Variable(input_image).permute((0, 2, 1, 3, 4))
input_var = input_var.to(device)
outputs = model(input_var)
fatigue_loss_ce = criterion1(outputs, sample_catego)
outputs_cont = util.output_tomse(outputs, args.num_classes)
fatigue_loss_mse = criterion2(outputs_cont, sample)
acc = util.calculate_accuracy(outputs, sample_catego)
loss = loss_alpha * fatigue_loss_ce + fatigue_loss_mse
compact = torch.tensor([fatigue_loss_mse])
# compute output
# loss, compact, frame_outputs, groud_truth = model(input_var, fatigue)
score_list.append(compact)
losses.update(loss.item(), input_var.size(0))
''' multi-task: log_vars weight '''
# loss = loss.sum()
loss = loss / accumulation_step
loss.backward();
accuracies.update(acc, input_var.size(0))
num_of_data += len(input_var[0])
# print(num_of_data)
if 0 == batch_idx % accumulation_step:
num_of_data = 0
''' model & full_model'''
# compute gradient and do SGD step
optimizer.step()
optimizer.zero_grad()
if batch_idx % 50 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.3f} ({acc.avg:.3f})'
.format(
epoch, batch_idx, len(train_loader),
data_time=data_time, loss=losses, acc=accuracies))
''' Compute Loss '''
sum_loss = torch.stack(score_list, dim=0)
max_loss, _ = sum_loss.max(0)
min_loss, _ = sum_loss.min(0)
mean_loss = sum_loss.mean(0)
print(' Emo, Ene, Fat, Att, Mot, Glo')
print(' Max Loss: {}'.format(max_loss.cpu().detach().numpy()))
print(' Min Loss: {}'.format(min_loss.cpu().detach().numpy()))
print(' Mean Loss: {}'.format(mean_loss.cpu().detach().numpy()))
print(' Average Loss1(total loss): {}'.format(round(float(losses.avg), 4)))
print(' Average Loss2(mse loss): {}'.format(round(float(sum_loss.mean()), 4)))
print(' Average accuracy: {}'.format(round(float(accuracies.avg), 3)))
return losses.avg, float(sum_loss.mean()), accuracies.avg
def validate(val_loader, model, criterion1, criterion2, loss_alpha):
global record_
losses = util.AverageMeter()
data_time = util.AverageMeter()
accuracies = util.AverageMeter()
# switch to train mode
end = time.time()
score_list = []
model.eval()
with torch.no_grad():
for batch_idx, (input_image, sample) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
sample_catego = util.label_to_categorical(sample, args.num_classes)
sample = sample.to(device)
sample_catego = sample_catego.to(device)
input_var = torch.autograd.Variable(input_image).permute((0, 2, 1, 3, 4))
input_var = input_var.to(device)
outputs = model(input_var)
# compute output
# loss, compact, frame_outputs, groud_truth = model(input_var, emotion, energy, fatigue, attention, motivate,
# Global_Status)
fatigue_loss_ce = criterion1(outputs, sample_catego)
outputs_cont = util.output_tomse(outputs, args.num_classes)
fatigue_loss_mse = criterion2(outputs_cont, sample)
acc = util.calculate_accuracy(outputs, sample_catego)
loss = loss_alpha * fatigue_loss_ce + fatigue_loss_mse
compact = torch.tensor([fatigue_loss_mse])
score_list.append(compact)
''' multi-task: log_vars weight '''
#loss = loss.sum()
accuracies.update(acc, input_var.size(0))
losses.update(loss.item(), input_var.size(0))
if batch_idx % 50 == 0:
print('Test: [{0}/{1}]\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.3f} ({acc.avg:.3f})'
.format(
batch_idx, len(val_loader),
data_time=data_time, loss=losses, acc=accuracies))
''' Compute Loss '''
sum_loss = torch.stack(score_list, dim=0)
max_loss, _ = sum_loss.max(0)
min_loss, _ = sum_loss.min(0)
mean_loss = sum_loss.mean(0)
print(' Emo, Ene, Fat, Att, Mot, Glo')
print(' Max Loss: {}'.format(max_loss.cpu().detach().numpy()))
print(' Min Loss: {}'.format(min_loss.cpu().detach().numpy()))
print(' Mean Loss: {}'.format(mean_loss.cpu().detach().numpy()))
print(' Average Loss1(total loss): {}'.format(round(float(losses.avg), 4)))
print(' Average Loss2(mse loss): {}'.format(round(float(sum_loss.mean()), 4)))
print(' Average accuracy: {}'.format(round(float(accuracies.avg), 3)))
early_stopping(round(float(losses.avg),4), model)
return losses.avg, float(sum_loss.mean()), accuracies.avg
if __name__ == '__main__':
main()