forked from makalo/Siamese-RPN-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvedio_test.py
executable file
·268 lines (240 loc) · 11.2 KB
/
vedio_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import tensorflow as tf
from net.Siamese_forward import SiameseRPN
from utils.image_reader_forward import Image_reader
import os
import numpy as np
import cv2
from module.gen_ancor import Anchor
import time
import sys
from config import cfg
import imageio
class VedioTest():
def __init__(self):
self.reader=Image_reader(mode='vedio')
self.model_dir=cfg.model_dir
self.vedio_dir=cfg.vedio_dir
self.vedio_name=cfg.vedio_name
self.anchor_op=Anchor(17,17)
self.anchors=self.anchor_op.anchors
self.anchors=self.anchor_op.corner_to_center(self.anchors)
self.penalty_k=cfg.penalty_k
self.window_influence=cfg.window_influence
self.lr=cfg.lr
#===================init-parameter==================
self.selectingObject = False
self.initTracking = False
self.onTracking = False
self.ix, self.iy, self.cx, self.cy = -1, -1, -1, -1
self.w, self.h = 0, 0
self.inteval = 1
self.duration = 0.01
self.select=True
#===================init-parameter==================
def test(self):
#===================input-output====================
img_t=tf.placeholder(dtype=tf.float32,shape=[1,None,None,3])
conv_c=tf.placeholder(dtype=tf.float32,shape=[4,4,256,10])
conv_r=tf.placeholder(dtype=tf.float32,shape=[4,4,256,20])
net=SiameseRPN({'img':img_t,'conv_c':conv_c,'conv_r':conv_r})
pre_conv_c=net.layers['t_c_k']
pre_conv_r=net.layers['t_r_k']
pre_cls=net.layers['cls']
pre_reg=net.layers['reg']
pre_cls=tf.nn.softmax(tf.reshape(pre_cls,(-1,2)))
pre_reg=tf.reshape(pre_reg,(-1,4))
conv_r_=np.zeros((4,4,256,20))
conv_c_=np.zeros((4,4,256,10))
pre_box=None
#===================input-output====================
#======================hanning======================
window = np.outer(np.hanning(17), np.hanning(17))
window=np.stack([window,window,window,window,window],-1)
self.window=window.reshape((-1))
#======================hanning======================
#================start-tensorflow===================
loader=tf.train.Saver()
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
sess=tf.InteractiveSession(config=config)
sess.run(tf.global_variables_initializer())
if self.load(loader,sess,self.model_dir):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
#================start-tensorflow===================
#===================init-vedio======================
if (len(sys.argv)==2):
self.vedio_name=sys.argv[1]
cap = cv2.VideoCapture(os.path.join(self.vedio_dir,self.vedio_name))
cv2.namedWindow('tracking')
cv2.setMouseCallback('tracking',self.draw_boundingbox)
# fps =cap.get(cv2.CAP_PROP_FPS)
# size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# fourcc=cv2.VideoWriter_fourcc('M','J','P','G')
# videoWriter=cv2.VideoWriter(os.path.join(self.vedio_dir,self.vedio_name.split('.')[0]+'_box.'+self.vedio_name.split('.')[1]),fourcc,fps,size)
#===================init-vedio======================
ret, frame = cap.read()
frames=[]
self.note=[]
while(cap.isOpened()):
if self.select:
frame_temp=frame.copy()
cv2.putText(frame_temp, 'select an area for tracing', (8,20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,255), 1)
if(self.selectingObject):
cv2.rectangle(frame,(self.ix,self.iy), (self.cx,self.cy), (0,255,255), 1)
elif(self.initTracking):
cv2.rectangle(frame,(self.ix,self.iy), (self.ix+self.w,self.iy+self.h), (0,255,255), 2)
#videoWriter.write(frame)
frames.append(frame[:,:,::-1])
#===================init-net======================
frame,box_ori,img_p,box_p,offset,ratio=self.reader.get_vedio_data(img=frame,box_ori=[self.ix,self.iy,self.w,self.h],frame_n=0)
img_p=np.expand_dims(img_p,axis=0)
feed_dict={img_t:img_p,conv_c:conv_c_,conv_r:conv_r_}
conv_c_,conv_r_=sess.run([pre_conv_c,pre_conv_r],feed_dict=feed_dict)
pre_box=box_ori#[x,y,self.w,self.h]===x,y is left-top corner
self.note.append(np.array([box_ori[0]+box_ori[2]/2,box_ori[1]+box_ori[3]/2,box_ori[2],box_ori[3],1.0]))
#===================init-net======================
self.initTracking = False
self.onTracking = True
self.select= False
elif(self.onTracking):
#===================update-net======================
frame,box_ori,img_p,box_p,offset,ratio=self.reader.get_vedio_data(img=frame,frame_n=1,pre_box=pre_box,note=self.note)
img_p=np.expand_dims(img_p,axis=0)
feed_dict={img_t:img_p,conv_c:conv_c_,conv_r:conv_r_}
t0 = time.time()
pre_cls_,pre_reg_=sess.run([pre_cls,pre_reg],feed_dict=feed_dict)
t1 = time.time()
bbox,score=self.nms(img_p[0],pre_cls_,pre_reg_,box_p)
pre_box=self.recover(frame,bbox,offset,ratio,pre_box,score)#[x1,y1,x2,y2]
frame=cv2.rectangle(frame,(int(pre_box[0]),int(pre_box[1])),(int(pre_box[2]),int(pre_box[3])),(0,0,255),1)
pre_box[2]=pre_box[2]-pre_box[0]
pre_box[3]=pre_box[3]-pre_box[1]
self.duration = 0.8*self.duration + 0.2*(t1-t0)
cv2.putText(frame, 'FPS: '+str(1/self.duration)[:4].strip('.'), (8,20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,255), 2)
#videoWriter.write(frame)
frames.append(frame[:,:,::-1])
#===================update-net======================
cv2.imshow('tracking', frame)
if self.select:
frame=frame_temp
else:
ret, frame = cap.read()
if not ret:
break
c = cv2.waitKey(self.inteval) & 0xFF
if c==27 or c==ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print('GIF and video are being synthesized.place wait for one minute..............')
#videoWriter.release()
#imageio.mimsave(os.path.join(self.vedio_dir,self.vedio_name.split('.')[0]+'_box.gif'), frames, 'GIF', duration=0.01)
print('vedio is saved in '+self.vedio_dir)
# mouse callback function
def draw_boundingbox(self,event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
self.selectingObject = True
self.onTracking = False
self.ix, self.iy = x, y
self.cx, self.cy = x, y
print(self.ix,self.iy)
elif event == cv2.EVENT_MOUSEMOVE:
self.cx, self.cy = x, y
elif event == cv2.EVENT_LBUTTONUP:
self.selectingObject = False
if(abs(x-self.ix)>10 and abs(y-self.iy)>10):
self.w, self.h = abs(x - self.ix), abs(y - self.iy)
self.ix, self.iy = min(x, self.ix), min(y, self.iy)
self.initTracking = True
else:
self.onTracking = False
elif event == cv2.EVENT_RBUTTONDOWN:
self.onTracking = False
if(self.w>0):
self.ix, self.iy = x-self.w/2, y-self.h/2
self.initTracking = True
def nms(self,img,scores,delta,gt_p):
img=(img*255).astype(np.uint8)
target_sz=gt_p[2:]
score=scores[:,1]
# #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
# b=self.anchor_op.center_to_corner(gt_p.reshape((1,4)))
# cv2.rectangle(img,(int(b[0][0]),int(b[0][1])),(int(b[0][2]),int(b[0][3])),(0,255,0),1)
# #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
bboxes=np.zeros_like(delta)
bboxes[:,0]=delta[:,0]*self.anchors[:,2]+self.anchors[:,0]
bboxes[:,1]=delta[:,1]*self.anchors[:,3]+self.anchors[:,1]
bboxes[:,2]=np.exp(delta[:,2])*self.anchors[:,2]
bboxes[:,3]=np.exp(delta[:,3])*self.anchors[:,3]#[x,y,w,h]
def change(r):
return np.maximum(r, 1./r)
def sz(w, h):
pad = (w + h) * 0.5
sz2 = (w + pad) * (h + pad)
return np.sqrt(sz2)
def sz_wh(wh):
pad = (wh[0] + wh[1]) * 0.5
sz2 = (wh[0] + pad) * (wh[1] + pad)
return np.sqrt(sz2)
# size penalty
s_c = change(sz(bboxes[:,2], bboxes[:,3]) / (sz_wh(target_sz))) # scale penalty
r_c = change((target_sz[0] / target_sz[1]) / (bboxes[:,2] / bboxes[:,3])) # ratio penalty
penalty = np.exp(-(r_c * s_c - 1.) * self.penalty_k)
pscore = penalty * score
# window float
pscore = pscore * (1 - self.window_influence) + self.window * self.window_influence
# #==================debug=====================
# pscore = score
# #==================debug=====================
best_pscore_id = np.argmax(pscore)
best_pscore = np.max(pscore)
print(best_pscore)
self.lr = penalty[best_pscore_id] * score[best_pscore_id] * self.lr
bbox=bboxes[best_pscore_id].reshape((1,4))#[x,y,w,h]
# #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
# b=self.anchor_op.center_to_corner(bbox)
# cv2.rectangle(img,(int(b[0][0]),int(b[0][1])),(int(b[0][2]),int(b[0][3])),(255,0,0),1)
# cv2.imshow('resize',img)
# cv2.waitKey(0)
# #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
return bbox[0],best_pscore
def recover(self,img,box,offset,ratio,pre_box,score):
#label=[c_x,c_y,w,h]
box[2]=box[2]*ratio
box[3]=box[3]*ratio
box[0]=box[0]*ratio+offset[0]
box[1]=box[1]*ratio+offset[1]
if score<0.9:
box[2] = pre_box[2]
box[3] = pre_box[3]
else:
box[2] = pre_box[2] * (1 - self.lr) + box[2] * self.lr
box[3] = pre_box[3] * (1 - self.lr) + box[3] * self.lr
note=np.zeros((5),dtype=np.float32)
note[0:4]=box
note[4]=score
self.note.append(note)
box[0]=int(box[0]-(box[2]-1)/2)
box[1]=int(box[1]-(box[3]-1)/2)
box[2]=round(box[0]+(box[2]))
box[3]=round(box[1]+(box[3]))
# #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
# cv2.rectangle(img,(int(box[0]),int(box[1])),(int(box[2]),int(box[3])),(255,0,0),1)
# cv2.imshow('ori',img)
# cv2.waitKey(0)
# #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
return box#[x1,y1,x2,y2]
def load(self,saver,sess,ckpt_path):
ckpt=tf.train.get_checkpoint_state(ckpt_path)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name=os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess,os.path.join(ckpt_path,ckpt_name))
print("Restored model parameters from {}".format(ckpt_name))
return True
else:
return False
if __name__=='__main__':
t=VedioTest()
t.test()