-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoco_train.log
3354 lines (3349 loc) · 295 KB
/
coco_train.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2024-04-08 10:15:02,286 - train_coco_unicam_resume.py - INFO: Pytorch version: 1.12.1
2024-04-08 10:15:02,324 - train_coco_unicam_resume.py - INFO: GPU type: NVIDIA GeForce RTX 3090
2024-04-08 10:15:02,324 - train_coco_unicam_resume.py - INFO:
args: Namespace(aux2final=30000, aux_layer=-3, backbone='vit_base_patch16_224', backend='nccl', begin_val=60000, betas=(0.9, 0.999), bkg_thre=0.45, cam_scales=[1.0, 0.5, 0.75, 1.25, 1.5], ckpt_dir='w_outputs/coco/2024-04/coco_unia_08-10-15-02/checkpoints', crop_size=448, data_folder='/HOME/scz0658/run/Jaye_Files/Data/MSCOCO/', decoder='largefov', eval_iters=2000, high_thre=0.65, ignore_index=255, list_folder='datasets/coco', local_rank=0, log_dir='w_outputs/coco/2024-04/coco_unia_08-10-15-02/train.log', log_iters=200, log_tag='coco_unia', low_thre=0.25, lr=6e-05, max_iters=80000, momentum=0.9, num_classes=81, num_samples=50, num_workers=8, optimizer='PolyWarmupAdamW', pooling='gmp', pooling_size=4, power=0.9, pred_dir='w_outputs/coco/2024-04/coco_unia_08-10-15-02/predictions', pretrained=True, radius=7, resume_path='/HOME/scz0658/run/Jaye_Files/unicam/unicam/w_outputs/coco/2024-04/ptc0.2_seg0.12_kl散度loss从0开始_30000开始aux2final_06-13-51-48/checkpoints/model_iter_latest.pth', resume_train=False, save_ckpt=True, scales=(0.5, 2), seed=0, seg2final=30000, spg=2, tb_dir='w_outputs/coco/2024-04/coco_unia_08-10-15-02/tensorboards', temp=0.5, tensorboard=False, train_set='train', use_aa=False, use_gauss=False, use_solar=False, val_set='val_part', w_aff=0.05, w_kl=0.1, w_ptc=0.2, w_reg=0.05, w_seg=0.12, warmup_iters=1500, warmup_lr=1e-06, work_dir='w_outputs/coco/2024-04/coco_unia_08-10-15-02', wt_decay=0.01)
2024-04-08 10:15:02,325 - distributed_c10d.py - INFO: Added key: store_based_barrier_key:1 to store for rank: 0
2024-04-08 10:15:02,376 - distributed_c10d.py - INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 4 nodes.
2024-04-08 10:15:02,376 - train_coco_unicam_resume.py - INFO: Total gpus: 4, samples per gpu: 2...
2024-04-08 10:15:14,826 - train_coco_unicam_resume.py - INFO:
Optimizer:
PolyWarmupAdamW (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 6e-05
maximize: False
weight_decay: 0.01
Parameter Group 1
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 6e-05
maximize: False
weight_decay: 0.01
Parameter Group 2
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0006000000000000001
maximize: False
weight_decay: 0.01
Parameter Group 3
amsgrad: False
betas: (0.9, 0.999)
capturable: False
eps: 1e-08
foreach: None
lr: 0.0006000000000000001
maximize: False
weight_decay: 0.01
)
2024-04-08 10:20:18,717 - train_coco_unicam_resume.py - INFO: Iter: 200; Elasped: 0:05:16; ETA: 1 day, 11:01:24; LR: 7.960e-06; cls_loss: 0.3503, cls_loss_aux: 8.9979, ptc_loss: 0.3892, aff_loss: 1.6750, kl_loss: 0.0379, seg_loss: 4.3982...
2024-04-08 10:25:06,424 - train_coco_unicam_resume.py - INFO: Iter: 400; Elasped: 0:10:04; ETA: 1 day, 9:23:16; LR: 1.596e-05; cls_loss: 0.1317, cls_loss_aux: 0.2648, ptc_loss: 0.3981, aff_loss: 1.6755, kl_loss: 0.0422, seg_loss: 4.2861...
2024-04-08 10:29:54,420 - train_coco_unicam_resume.py - INFO: Iter: 600; Elasped: 0:14:52; ETA: 1 day, 8:47:21; LR: 2.396e-05; cls_loss: 0.1195, cls_loss_aux: 0.1681, ptc_loss: 0.3954, aff_loss: 1.6772, kl_loss: 0.0452, seg_loss: 3.9183...
2024-04-08 10:34:42,904 - train_coco_unicam_resume.py - INFO: Iter: 800; Elasped: 0:19:40; ETA: 1 day, 8:27:00; LR: 3.196e-05; cls_loss: 0.1017, cls_loss_aux: 0.1440, ptc_loss: 0.3878, aff_loss: 1.6766, kl_loss: 0.0501, seg_loss: 3.6600...
2024-04-08 10:39:30,876 - train_coco_unicam_resume.py - INFO: Iter: 1000; Elasped: 0:24:28; ETA: 1 day, 8:12:52; LR: 3.996e-05; cls_loss: 0.0909, cls_loss_aux: 0.1327, ptc_loss: 0.3851, aff_loss: 1.6764, kl_loss: 0.0581, seg_loss: 3.3246...
2024-04-08 10:39:30,877 - train_coco_unicam_resume.py - INFO: Saving_1000_cpt...
2024-04-08 10:44:20,160 - train_coco_unicam_resume.py - INFO: Iter: 1200; Elasped: 0:29:18; ETA: 1 day, 8:04:02; LR: 4.796e-05; cls_loss: 0.0757, cls_loss_aux: 0.1212, ptc_loss: 0.3832, aff_loss: 1.6758, kl_loss: 0.0574, seg_loss: 2.9342...
2024-04-08 10:49:08,668 - train_coco_unicam_resume.py - INFO: Iter: 1400; Elasped: 0:34:06; ETA: 1 day, 7:54:28; LR: 5.596e-05; cls_loss: 0.0724, cls_loss_aux: 0.1180, ptc_loss: 0.3885, aff_loss: 1.6753, kl_loss: 0.0572, seg_loss: 2.7330...
2024-04-08 10:53:56,912 - train_coco_unicam_resume.py - INFO: Iter: 1600; Elasped: 0:38:54; ETA: 1 day, 7:46:06; LR: 5.892e-05; cls_loss: 0.0674, cls_loss_aux: 0.1188, ptc_loss: 0.3991, aff_loss: 1.6737, kl_loss: 0.0616, seg_loss: 2.4450...
2024-04-08 10:58:45,127 - train_coco_unicam_resume.py - INFO: Iter: 1800; Elasped: 0:43:43; ETA: 1 day, 7:39:14; LR: 5.878e-05; cls_loss: 0.0678, cls_loss_aux: 0.1105, ptc_loss: 0.4082, aff_loss: 1.6717, kl_loss: 0.0686, seg_loss: 2.2850...
2024-04-08 11:03:34,230 - train_coco_unicam_resume.py - INFO: Iter: 2000; Elasped: 0:48:32; ETA: 1 day, 7:32:48; LR: 5.865e-05; cls_loss: 0.0547, cls_loss_aux: 0.0867, ptc_loss: 0.4236, aff_loss: 1.6706, kl_loss: 0.0624, seg_loss: 2.3869...
2024-04-08 11:03:34,231 - train_coco_unicam_resume.py - INFO: Saving_2000_cpt...
2024-04-08 11:08:24,519 - train_coco_unicam_resume.py - INFO: Iter: 2200; Elasped: 0:53:22; ETA: 1 day, 7:27:14; LR: 5.851e-05; cls_loss: 0.0633, cls_loss_aux: 0.1002, ptc_loss: 0.4269, aff_loss: 1.6699, kl_loss: 0.0600, seg_loss: 2.3544...
2024-04-08 11:13:12,537 - train_coco_unicam_resume.py - INFO: Iter: 2400; Elasped: 0:58:10; ETA: 1 day, 7:20:43; LR: 5.838e-05; cls_loss: 0.0585, cls_loss_aux: 0.0951, ptc_loss: 0.4269, aff_loss: 1.6700, kl_loss: 0.0578, seg_loss: 2.3433...
2024-04-08 11:18:01,428 - train_coco_unicam_resume.py - INFO: Iter: 2600; Elasped: 1:02:59; ETA: 1 day, 7:14:57; LR: 5.824e-05; cls_loss: 0.0574, cls_loss_aux: 0.0925, ptc_loss: 0.4249, aff_loss: 1.6683, kl_loss: 0.0584, seg_loss: 2.2886...
2024-04-08 11:22:50,931 - train_coco_unicam_resume.py - INFO: Iter: 2800; Elasped: 1:07:48; ETA: 1 day, 7:09:20; LR: 5.811e-05; cls_loss: 0.0618, cls_loss_aux: 0.0983, ptc_loss: 0.4385, aff_loss: 1.6701, kl_loss: 0.0578, seg_loss: 2.3323...
2024-04-08 11:27:39,154 - train_coco_unicam_resume.py - INFO: Iter: 3000; Elasped: 1:12:37; ETA: 1 day, 7:03:49; LR: 5.797e-05; cls_loss: 0.0568, cls_loss_aux: 0.0848, ptc_loss: 0.4373, aff_loss: 1.6676, kl_loss: 0.0600, seg_loss: 2.3554...
2024-04-08 11:27:39,154 - train_coco_unicam_resume.py - INFO: Saving_3000_cpt...
2024-04-08 11:32:28,953 - train_coco_unicam_resume.py - INFO: Iter: 3200; Elasped: 1:17:26; ETA: 1 day, 6:58:24; LR: 5.784e-05; cls_loss: 0.0525, cls_loss_aux: 0.0815, ptc_loss: 0.4477, aff_loss: 1.6684, kl_loss: 0.0591, seg_loss: 2.2656...
2024-04-08 11:37:17,025 - train_coco_unicam_resume.py - INFO: Iter: 3400; Elasped: 1:22:15; ETA: 1 day, 6:53:02; LR: 5.770e-05; cls_loss: 0.0606, cls_loss_aux: 0.0937, ptc_loss: 0.4523, aff_loss: 1.6672, kl_loss: 0.0609, seg_loss: 2.3218...
2024-04-08 11:42:04,763 - train_coco_unicam_resume.py - INFO: Iter: 3600; Elasped: 1:27:02; ETA: 1 day, 6:47:02; LR: 5.757e-05; cls_loss: 0.0571, cls_loss_aux: 0.0826, ptc_loss: 0.4584, aff_loss: 1.6688, kl_loss: 0.0589, seg_loss: 2.2300...
2024-04-08 11:46:53,370 - train_coco_unicam_resume.py - INFO: Iter: 3800; Elasped: 1:31:51; ETA: 1 day, 6:41:50; LR: 5.743e-05; cls_loss: 0.0588, cls_loss_aux: 0.0858, ptc_loss: 0.4611, aff_loss: 1.6676, kl_loss: 0.0575, seg_loss: 2.3082...
2024-04-08 11:51:40,528 - train_coco_unicam_resume.py - INFO: Iter: 4000; Elasped: 1:36:38; ETA: 1 day, 6:36:02; LR: 5.729e-05; cls_loss: 0.0552, cls_loss_aux: 0.0756, ptc_loss: 0.4650, aff_loss: 1.6685, kl_loss: 0.0570, seg_loss: 2.2975...
2024-04-08 11:51:40,529 - train_coco_unicam_resume.py - INFO: Saving_4000_cpt...
2024-04-08 11:56:30,058 - train_coco_unicam_resume.py - INFO: Iter: 4200; Elasped: 1:41:28; ETA: 1 day, 6:31:13; LR: 5.716e-05; cls_loss: 0.0553, cls_loss_aux: 0.0742, ptc_loss: 0.4663, aff_loss: 1.6687, kl_loss: 0.0594, seg_loss: 2.3769...
2024-04-08 12:01:20,175 - train_coco_unicam_resume.py - INFO: Iter: 4400; Elasped: 1:46:18; ETA: 1 day, 6:26:25; LR: 5.702e-05; cls_loss: 0.0544, cls_loss_aux: 0.0729, ptc_loss: 0.4712, aff_loss: 1.6655, kl_loss: 0.0579, seg_loss: 2.3544...
2024-04-08 12:06:08,376 - train_coco_unicam_resume.py - INFO: Iter: 4600; Elasped: 1:51:06; ETA: 1 day, 6:21:04; LR: 5.689e-05; cls_loss: 0.0566, cls_loss_aux: 0.0756, ptc_loss: 0.4704, aff_loss: 1.6658, kl_loss: 0.0589, seg_loss: 2.3655...
2024-04-08 12:10:57,090 - train_coco_unicam_resume.py - INFO: Iter: 4800; Elasped: 1:55:55; ETA: 1 day, 6:16:01; LR: 5.675e-05; cls_loss: 0.0553, cls_loss_aux: 0.0689, ptc_loss: 0.4726, aff_loss: 1.6661, kl_loss: 0.0573, seg_loss: 2.3881...
2024-04-08 12:15:46,035 - train_coco_unicam_resume.py - INFO: Iter: 5000; Elasped: 2:00:44; ETA: 1 day, 6:11:00; LR: 5.661e-05; cls_loss: 0.0556, cls_loss_aux: 0.0695, ptc_loss: 0.4750, aff_loss: 1.6667, kl_loss: 0.0578, seg_loss: 2.4208...
2024-04-08 12:15:46,035 - train_coco_unicam_resume.py - INFO: Saving_5000_cpt...
2024-04-08 12:20:37,740 - train_coco_unicam_resume.py - INFO: Iter: 5200; Elasped: 2:05:35; ETA: 1 day, 6:06:28; LR: 5.648e-05; cls_loss: 0.0554, cls_loss_aux: 0.0685, ptc_loss: 0.4702, aff_loss: 1.6676, kl_loss: 0.0554, seg_loss: 2.4638...
2024-04-08 12:25:26,554 - train_coco_unicam_resume.py - INFO: Iter: 5400; Elasped: 2:10:24; ETA: 1 day, 6:01:27; LR: 5.634e-05; cls_loss: 0.0550, cls_loss_aux: 0.0676, ptc_loss: 0.4733, aff_loss: 1.6672, kl_loss: 0.0635, seg_loss: 2.5430...
2024-04-08 12:30:15,609 - train_coco_unicam_resume.py - INFO: Iter: 5600; Elasped: 2:15:13; ETA: 1 day, 5:56:27; LR: 5.621e-05; cls_loss: 0.0574, cls_loss_aux: 0.0676, ptc_loss: 0.4736, aff_loss: 1.6682, kl_loss: 0.0571, seg_loss: 2.5306...
2024-04-08 12:35:03,490 - train_coco_unicam_resume.py - INFO: Iter: 5800; Elasped: 2:20:01; ETA: 1 day, 5:51:14; LR: 5.607e-05; cls_loss: 0.0553, cls_loss_aux: 0.0681, ptc_loss: 0.4729, aff_loss: 1.6662, kl_loss: 0.0577, seg_loss: 2.6322...
2024-04-08 12:39:52,010 - train_coco_unicam_resume.py - INFO: Iter: 6000; Elasped: 2:24:50; ETA: 1 day, 5:46:16; LR: 5.594e-05; cls_loss: 0.0534, cls_loss_aux: 0.0651, ptc_loss: 0.4742, aff_loss: 1.6660, kl_loss: 0.0559, seg_loss: 2.6958...
2024-04-08 12:39:52,010 - train_coco_unicam_resume.py - INFO: Saving_6000_cpt...
2024-04-08 12:44:42,994 - train_coco_unicam_resume.py - INFO: Iter: 6200; Elasped: 2:29:40; ETA: 1 day, 5:41:30; LR: 5.580e-05; cls_loss: 0.0496, cls_loss_aux: 0.0580, ptc_loss: 0.4750, aff_loss: 1.6665, kl_loss: 0.0590, seg_loss: 2.6877...
2024-04-08 12:49:31,930 - train_coco_unicam_resume.py - INFO: Iter: 6400; Elasped: 2:34:29; ETA: 1 day, 5:36:33; LR: 5.566e-05; cls_loss: 0.0496, cls_loss_aux: 0.0610, ptc_loss: 0.4743, aff_loss: 1.6670, kl_loss: 0.0572, seg_loss: 2.8412...
2024-04-08 12:54:21,726 - train_coco_unicam_resume.py - INFO: Iter: 6600; Elasped: 2:39:19; ETA: 1 day, 5:31:47; LR: 5.553e-05; cls_loss: 0.0501, cls_loss_aux: 0.0596, ptc_loss: 0.4724, aff_loss: 1.6676, kl_loss: 0.0553, seg_loss: 2.9430...
2024-04-08 12:59:11,358 - train_coco_unicam_resume.py - INFO: Iter: 6800; Elasped: 2:44:09; ETA: 1 day, 5:27:01; LR: 5.539e-05; cls_loss: 0.0539, cls_loss_aux: 0.0644, ptc_loss: 0.4724, aff_loss: 1.6673, kl_loss: 0.0533, seg_loss: 3.0313...
2024-04-08 13:03:59,601 - train_coco_unicam_resume.py - INFO: Iter: 7000; Elasped: 2:48:57; ETA: 1 day, 5:21:54; LR: 5.525e-05; cls_loss: 0.0507, cls_loss_aux: 0.0627, ptc_loss: 0.4745, aff_loss: 1.6660, kl_loss: 0.0553, seg_loss: 2.8883...
2024-04-08 13:03:59,602 - train_coco_unicam_resume.py - INFO: Saving_7000_cpt...
2024-04-08 13:08:49,894 - train_coco_unicam_resume.py - INFO: Iter: 7200; Elasped: 2:53:47; ETA: 1 day, 5:17:08; LR: 5.512e-05; cls_loss: 0.0560, cls_loss_aux: 0.0670, ptc_loss: 0.4750, aff_loss: 1.6650, kl_loss: 0.0576, seg_loss: 3.0430...
2024-04-08 13:13:38,503 - train_coco_unicam_resume.py - INFO: Iter: 7400; Elasped: 2:58:36; ETA: 1 day, 5:12:12; LR: 5.498e-05; cls_loss: 0.0506, cls_loss_aux: 0.0613, ptc_loss: 0.4748, aff_loss: 1.6656, kl_loss: 0.0568, seg_loss: 2.9775...
2024-04-08 13:18:27,106 - train_coco_unicam_resume.py - INFO: Iter: 7600; Elasped: 3:03:25; ETA: 1 day, 5:07:17; LR: 5.485e-05; cls_loss: 0.0535, cls_loss_aux: 0.0649, ptc_loss: 0.4755, aff_loss: 1.6657, kl_loss: 0.0543, seg_loss: 3.0215...
2024-04-08 13:23:16,099 - train_coco_unicam_resume.py - INFO: Iter: 7800; Elasped: 3:08:14; ETA: 1 day, 5:02:21; LR: 5.471e-05; cls_loss: 0.0525, cls_loss_aux: 0.0629, ptc_loss: 0.4742, aff_loss: 1.6659, kl_loss: 0.0553, seg_loss: 3.0305...
2024-04-08 13:28:04,871 - train_coco_unicam_resume.py - INFO: Iter: 8000; Elasped: 3:13:02; ETA: 1 day, 4:57:18; LR: 5.457e-05; cls_loss: 0.0511, cls_loss_aux: 0.0608, ptc_loss: 0.4748, aff_loss: 1.6665, kl_loss: 0.0562, seg_loss: 3.2207...
2024-04-08 13:28:04,872 - train_coco_unicam_resume.py - INFO: Saving_8000_cpt...
2024-04-08 13:32:54,991 - train_coco_unicam_resume.py - INFO: Iter: 8200; Elasped: 3:17:52; ETA: 1 day, 4:52:32; LR: 5.444e-05; cls_loss: 0.0523, cls_loss_aux: 0.0630, ptc_loss: 0.4658, aff_loss: 1.6663, kl_loss: 0.0545, seg_loss: 3.4062...
2024-04-08 13:37:43,710 - train_coco_unicam_resume.py - INFO: Iter: 8400; Elasped: 3:22:41; ETA: 1 day, 4:47:38; LR: 5.430e-05; cls_loss: 0.0600, cls_loss_aux: 0.0680, ptc_loss: 0.3448, aff_loss: 1.6520, kl_loss: 0.0518, seg_loss: 4.2807...
2024-04-08 13:42:32,174 - train_coco_unicam_resume.py - INFO: Iter: 8600; Elasped: 3:27:30; ETA: 1 day, 4:42:43; LR: 5.416e-05; cls_loss: 0.0590, cls_loss_aux: 0.0662, ptc_loss: 0.2334, aff_loss: 1.6444, kl_loss: 0.0474, seg_loss: 4.4103...
2024-04-08 13:47:21,114 - train_coco_unicam_resume.py - INFO: Iter: 8800; Elasped: 3:32:19; ETA: 1 day, 4:37:50; LR: 5.403e-05; cls_loss: 0.0536, cls_loss_aux: 0.0600, ptc_loss: 0.2031, aff_loss: 1.6381, kl_loss: 0.0468, seg_loss: 4.4088...
2024-04-08 13:52:09,671 - train_coco_unicam_resume.py - INFO: Iter: 9000; Elasped: 3:37:07; ETA: 1 day, 4:32:48; LR: 5.389e-05; cls_loss: 0.0521, cls_loss_aux: 0.0596, ptc_loss: 0.1857, aff_loss: 1.6367, kl_loss: 0.0463, seg_loss: 4.4085...
2024-04-08 13:52:09,672 - train_coco_unicam_resume.py - INFO: Saving_9000_cpt...
2024-04-08 19:07:00,240 - train_coco_unicam_resume.py - INFO: Iter: 9200; Elasped: 0:05:35; ETA: 0:42:58; LR: 5.375e-05; cls_loss: 0.0522, cls_loss_aux: 0.0580, ptc_loss: 0.1782, aff_loss: 1.6370, kl_loss: 0.0431, seg_loss: 4.4094...
2024-04-08 19:11:45,932 - train_coco_unicam_resume.py - INFO: Iter: 9400; Elasped: 0:10:20; ETA: 1:17:36; LR: 5.362e-05; cls_loss: 0.0520, cls_loss_aux: 0.0590, ptc_loss: 0.1554, aff_loss: 1.6346, kl_loss: 0.0413, seg_loss: 4.4076...
2024-04-08 19:16:31,527 - train_coco_unicam_resume.py - INFO: Iter: 9600; Elasped: 0:15:06; ETA: 1:50:44; LR: 5.348e-05; cls_loss: 0.0511, cls_loss_aux: 0.0580, ptc_loss: 0.1480, aff_loss: 1.6331, kl_loss: 0.0398, seg_loss: 4.4064...
2024-04-08 19:21:17,511 - train_coco_unicam_resume.py - INFO: Iter: 9800; Elasped: 0:19:52; ETA: 2:22:18; LR: 5.334e-05; cls_loss: 0.0507, cls_loss_aux: 0.0578, ptc_loss: 0.1477, aff_loss: 1.6284, kl_loss: 0.0420, seg_loss: 4.4056...
2024-04-08 19:26:03,528 - train_coco_unicam_resume.py - INFO: Iter: 10000; Elasped: 0:24:38; ETA: 2:52:26; LR: 5.321e-05; cls_loss: 0.0523, cls_loss_aux: 0.0603, ptc_loss: 0.1508, aff_loss: 1.6278, kl_loss: 0.0436, seg_loss: 4.4053...
2024-04-08 19:26:03,528 - train_coco_unicam_resume.py - INFO: Validating...
2024-04-08 19:57:07,763 - train_coco_unicam_resume.py - INFO: val cls score: 0.781180
2024-04-08 19:57:07,780 - train_coco_unicam_resume.py - INFO:
+------------------+--------+---------+---------+--------+----------+
| Class | CAM | aux_CAM | aff_Map | dr_Map | Seg_Pred |
+==================+========+=========+=========+========+==========+
| _background_ | 75.617 | 70.127 | 74.764 | 75.412 | 0.001 |
+------------------+--------+---------+---------+--------+----------+
| person | 53.398 | 55.296 | 18.068 | 53.250 | 0.124 |
+------------------+--------+---------+---------+--------+----------+
| bicycle | 42.882 | 41.914 | 28.114 | 42.675 | 0.139 |
+------------------+--------+---------+---------+--------+----------+
| car | 40.341 | 42.955 | 25.040 | 40.135 | 0.154 |
+------------------+--------+---------+---------+--------+----------+
| motorcycle | 62.496 | 57.859 | 35.894 | 62.172 | 2.479 |
+------------------+--------+---------+---------+--------+----------+
| airplane | 54.970 | 59.932 | 32.784 | 54.923 | 0 |
+------------------+--------+---------+---------+--------+----------+
| bus | 69.332 | 67.318 | 62.243 | 69.009 | 0 |
+------------------+--------+---------+---------+--------+----------+
| train | 50.406 | 51.639 | 47.081 | 50.340 | 0 |
+------------------+--------+---------+---------+--------+----------+
| truck | 49.708 | 47.380 | 42.170 | 49.740 | 0.051 |
+------------------+--------+---------+---------+--------+----------+
| boat | 49.219 | 44.674 | 31.628 | 49.248 | 0 |
+------------------+--------+---------+---------+--------+----------+
| traffic light | 19.942 | 12.568 | 20.382 | 19.689 | 0.017 |
+------------------+--------+---------+---------+--------+----------+
| fire hydrant | 60.035 | 56.852 | 58.451 | 59.135 | 0 |
+------------------+--------+---------+---------+--------+----------+
| stop sign | 46.548 | 31.872 | 2.656 | 46.370 | 0.008 |
+------------------+--------+---------+---------+--------+----------+
| parking meter | 52.994 | 42.196 | 44.783 | 52.618 | 0 |
+------------------+--------+---------+---------+--------+----------+
| bench | 30.256 | 23.334 | 21.783 | 30.235 | 0.102 |
+------------------+--------+---------+---------+--------+----------+
| bird | 46.587 | 54.481 | 15.202 | 45.996 | 0.003 |
+------------------+--------+---------+---------+--------+----------+
| cat | 74.238 | 75.423 | 7.624 | 74.263 | 0.023 |
+------------------+--------+---------+---------+--------+----------+
| dog | 66.161 | 74.003 | 4.254 | 66.081 | 0.001 |
+------------------+--------+---------+---------+--------+----------+
| horse | 59.289 | 64.597 | 14.750 | 59.071 | 0.016 |
+------------------+--------+---------+---------+--------+----------+
| sheep | 73.350 | 69.859 | 6.718 | 73.197 | 1.699 |
+------------------+--------+---------+---------+--------+----------+
| cow | 71.061 | 68.332 | 7.820 | 71.031 | 0.116 |
+------------------+--------+---------+---------+--------+----------+
| elephant | 75.041 | 70.396 | 55.889 | 74.967 | 0.089 |
+------------------+--------+---------+---------+--------+----------+
| bear | 79.381 | 72.728 | 24.684 | 78.475 | 0.090 |
+------------------+--------+---------+---------+--------+----------+
| zebra | 77.466 | 78.203 | 64.692 | 77.534 | 0 |
+------------------+--------+---------+---------+--------+----------+
| giraffe | 70.127 | 66.980 | 18.255 | 70.050 | 0 |
+------------------+--------+---------+---------+--------+----------+
| backpack | 19.942 | 23.092 | 5.476 | 19.998 | 0.017 |
+------------------+--------+---------+---------+--------+----------+
| umbrella | 62.543 | 47.707 | 16.699 | 62.497 | 0.006 |
+------------------+--------+---------+---------+--------+----------+
| handbag | 10.566 | 8.001 | 3.712 | 10.631 | 0.104 |
+------------------+--------+---------+---------+--------+----------+
| tie | 11.353 | 12.690 | 6.823 | 11.296 | 0.009 |
+------------------+--------+---------+---------+--------+----------+
| suitcase | 53.161 | 47.553 | 9.721 | 53.183 | 0.036 |
+------------------+--------+---------+---------+--------+----------+
| frisbee | 16.335 | 19.409 | 11.880 | 16.176 | 0.117 |
+------------------+--------+---------+---------+--------+----------+
| skis | 4.907 | 5.701 | 4.904 | 4.880 | 0.007 |
+------------------+--------+---------+---------+--------+----------+
| snowboard | 8.851 | 6.292 | 9.361 | 8.793 | 0 |
+------------------+--------+---------+---------+--------+----------+
| sports ball | 3.020 | 3.912 | 1.826 | 2.991 | 0.001 |
+------------------+--------+---------+---------+--------+----------+
| kite | 15.330 | 22.358 | 14.678 | 15.067 | 0.003 |
+------------------+--------+---------+---------+--------+----------+
| baseball bat | 1.304 | 1.029 | 1.287 | 1.300 | 0.002 |
+------------------+--------+---------+---------+--------+----------+
| baseball glove | 3.010 | 5.931 | 1.586 | 3.006 | 0 |
+------------------+--------+---------+---------+--------+----------+
| skateboard | 9.637 | 10.787 | 2.939 | 9.586 | 0.002 |
+------------------+--------+---------+---------+--------+----------+
| surfboard | 7.531 | 7.990 | 7.318 | 7.521 | 0.002 |
+------------------+--------+---------+---------+--------+----------+
| tennis racket | 4.142 | 4.406 | 0.845 | 4.095 | 0.011 |
+------------------+--------+---------+---------+--------+----------+
| bottle | 13.630 | 17.082 | 3.256 | 13.555 | 0.076 |
+------------------+--------+---------+---------+--------+----------+
| wine glass | 28.280 | 18.362 | 16.736 | 28.111 | 0.109 |
+------------------+--------+---------+---------+--------+----------+
| cup | 13.448 | 24.086 | 5.161 | 13.438 | 0.005 |
+------------------+--------+---------+---------+--------+----------+
| fork | 2.970 | 7.480 | 1.740 | 2.933 | 0.016 |
+------------------+--------+---------+---------+--------+----------+
| knife | 4.185 | 3.979 | 2.444 | 4.152 | 0.027 |
+------------------+--------+---------+---------+--------+----------+
| spoon | 3.530 | 3.138 | 2.830 | 4.005 | 0 |
+------------------+--------+---------+---------+--------+----------+
| bowl | 29.496 | 20.631 | 24.548 | 30.035 | 0.005 |
+------------------+--------+---------+---------+--------+----------+
| banana | 66.740 | 62.750 | 21.218 | 66.729 | 0.031 |
+------------------+--------+---------+---------+--------+----------+
| apple | 57.150 | 56.581 | 9.439 | 57.122 | 0.011 |
+------------------+--------+---------+---------+--------+----------+
| sandwich | 44.577 | 47.896 | 12.232 | 44.379 | 0.005 |
+------------------+--------+---------+---------+--------+----------+
| orange | 66.906 | 63.434 | 19.483 | 67.029 | 0.043 |
+------------------+--------+---------+---------+--------+----------+
| broccoli | 55.013 | 59.030 | 36.695 | 53.132 | 0.121 |
+------------------+--------+---------+---------+--------+----------+
| carrot | 32.049 | 24.735 | 11.431 | 31.972 | 0 |
+------------------+--------+---------+---------+--------+----------+
| hot dog | 58.644 | 44.196 | 10.696 | 58.416 | 0.054 |
+------------------+--------+---------+---------+--------+----------+
| pizza | 57.498 | 69.799 | 17.635 | 57.692 | 0 |
+------------------+--------+---------+---------+--------+----------+
| donut | 64.940 | 70.712 | 37.323 | 64.866 | 0 |
+------------------+--------+---------+---------+--------+----------+
| cake | 42.965 | 50.469 | 30.695 | 42.754 | 0.056 |
+------------------+--------+---------+---------+--------+----------+
| chair | 16.413 | 24.202 | 9.084 | 16.394 | 0.358 |
+------------------+--------+---------+---------+--------+----------+
| couch | 30.492 | 45.276 | 14.628 | 30.850 | 0.014 |
+------------------+--------+---------+---------+--------+----------+
| potted plant | 11.889 | 12.665 | 4.855 | 11.848 | 0.023 |
+------------------+--------+---------+---------+--------+----------+
| bed | 51.946 | 58.034 | 30.307 | 51.934 | 0 |
+------------------+--------+---------+---------+--------+----------+
| dining table | 24.932 | 26.839 | 19.434 | 25.972 | 0.579 |
+------------------+--------+---------+---------+--------+----------+
| toilet | 61.466 | 59.086 | 32.384 | 61.181 | 0.001 |
+------------------+--------+---------+---------+--------+----------+
| tv | 34.183 | 35.873 | 6.895 | 34.170 | 0.000 |
+------------------+--------+---------+---------+--------+----------+
| laptop | 47.162 | 47.001 | 5.840 | 46.945 | 0.470 |
+------------------+--------+---------+---------+--------+----------+
| mouse | 8.813 | 6.668 | 12.368 | 9.336 | 0 |
+------------------+--------+---------+---------+--------+----------+
| remote | 27.142 | 32.381 | 16.254 | 26.807 | 0.148 |
+------------------+--------+---------+---------+--------+----------+
| keyboard | 33.246 | 23.604 | 15.046 | 33.239 | 0.011 |
+------------------+--------+---------+---------+--------+----------+
| cell phone | 33.615 | 39.953 | 16.607 | 33.439 | 0.015 |
+------------------+--------+---------+---------+--------+----------+
| microwave | 24.577 | 40.197 | 17.822 | 24.444 | 0 |
+------------------+--------+---------+---------+--------+----------+
| oven | 27.295 | 26.939 | 14.529 | 27.516 | 0.138 |
+------------------+--------+---------+---------+--------+----------+
| toaster | 12.990 | 5.892 | 1.211 | 12.745 | 0.010 |
+------------------+--------+---------+---------+--------+----------+
| sink | 27.037 | 23.167 | 19.202 | 27.027 | 0 |
+------------------+--------+---------+---------+--------+----------+
| refrigerator | 44.784 | 39.632 | 24.261 | 45.216 | 0.001 |
+------------------+--------+---------+---------+--------+----------+
| book | 21.912 | 39.324 | 6.849 | 21.997 | 0.007 |
+------------------+--------+---------+---------+--------+----------+
| clock | 32.156 | 28.709 | 29.955 | 32.098 | 0.574 |
+------------------+--------+---------+---------+--------+----------+
| vase | 22.664 | 18.009 | 21.910 | 22.609 | 0 |
+------------------+--------+---------+---------+--------+----------+
| scissors | 29.944 | 22.579 | 15.632 | 29.483 | 0.022 |
+------------------+--------+---------+---------+--------+----------+
| teddy bear | 61.254 | 67.074 | 19.035 | 60.927 | 0 |
+------------------+--------+---------+---------+--------+----------+
| hair drier | 9.530 | 4.181 | 10.587 | 9.348 | 0 |
+------------------+--------+---------+---------+--------+----------+
| toothbrush | 15.460 | 13.385 | 13.636 | 15.113 | 0.001 |
+------------------+--------+---------+---------+--------+----------+
| m-Precision | 46.132 | 46.292 | 36.941 | 45.810 | nan |
+------------------+--------+---------+---------+--------+----------+
| m-Recall | 69.448 | 72.793 | 34.762 | 69.949 | 1.953 |
+------------------+--------+---------+---------+--------+----------+
| m-ConfutionRatio | 5.108 | 5.323 | 9.080 | 5.110 | nan |
+------------------+--------+---------+---------+--------+----------+
| m-IoU | 37.474 | 37.195 | 18.601 | 37.378 | 0.103 |
+------------------+--------+---------+---------+--------+----------+
2024-04-08 19:57:07,780 - train_coco_unicam_resume.py - INFO: Saving_10000_cpt...
2024-04-08 20:02:14,033 - train_coco_unicam_resume.py - INFO: Iter: 10200; Elasped: 1:00:49; ETA: 6:56:10; LR: 5.307e-05; cls_loss: 0.0491, cls_loss_aux: 0.0566, ptc_loss: 0.1428, aff_loss: 1.6304, kl_loss: 0.0413, seg_loss: 4.4051...
2024-04-08 20:07:00,883 - train_coco_unicam_resume.py - INFO: Iter: 10400; Elasped: 1:05:35; ETA: 7:18:54; LR: 5.293e-05; cls_loss: 0.0509, cls_loss_aux: 0.0594, ptc_loss: 0.1516, aff_loss: 1.6279, kl_loss: 0.0436, seg_loss: 4.4053...
2024-04-08 20:11:48,045 - train_coco_unicam_resume.py - INFO: Iter: 10600; Elasped: 1:10:23; ETA: 7:40:48; LR: 5.280e-05; cls_loss: 0.0526, cls_loss_aux: 0.0619, ptc_loss: 0.1422, aff_loss: 1.6250, kl_loss: 0.0432, seg_loss: 4.4042...
2024-04-08 20:16:35,740 - train_coco_unicam_resume.py - INFO: Iter: 10800; Elasped: 1:15:10; ETA: 8:01:37; LR: 5.266e-05; cls_loss: 0.0552, cls_loss_aux: 0.0635, ptc_loss: 0.1405, aff_loss: 1.6254, kl_loss: 0.0451, seg_loss: 4.4029...
2024-04-08 20:21:23,641 - train_coco_unicam_resume.py - INFO: Iter: 11000; Elasped: 1:19:58; ETA: 8:21:36; LR: 5.252e-05; cls_loss: 0.0457, cls_loss_aux: 0.0526, ptc_loss: 0.1334, aff_loss: 1.6254, kl_loss: 0.0416, seg_loss: 4.4047...
2024-04-08 20:21:23,655 - train_coco_unicam_resume.py - INFO: Saving_11000_cpt...
2024-04-08 20:26:13,814 - train_coco_unicam_resume.py - INFO: Iter: 11200; Elasped: 1:24:48; ETA: 8:40:54; LR: 5.238e-05; cls_loss: 0.0539, cls_loss_aux: 0.0616, ptc_loss: 0.1341, aff_loss: 1.6204, kl_loss: 0.0416, seg_loss: 4.4046...
2024-04-08 20:31:00,390 - train_coco_unicam_resume.py - INFO: Iter: 11400; Elasped: 1:29:35; ETA: 8:59:04; LR: 5.225e-05; cls_loss: 0.0513, cls_loss_aux: 0.0600, ptc_loss: 0.1388, aff_loss: 1.6178, kl_loss: 0.0391, seg_loss: 4.4040...
2024-04-08 20:35:47,291 - train_coco_unicam_resume.py - INFO: Iter: 11600; Elasped: 1:34:22; ETA: 9:16:26; LR: 5.211e-05; cls_loss: 0.0481, cls_loss_aux: 0.0569, ptc_loss: 0.1222, aff_loss: 1.6167, kl_loss: 0.0413, seg_loss: 4.4055...
2024-04-08 20:40:34,366 - train_coco_unicam_resume.py - INFO: Iter: 11800; Elasped: 1:39:09; ETA: 9:33:03; LR: 5.197e-05; cls_loss: 0.0538, cls_loss_aux: 0.0613, ptc_loss: 0.1081, aff_loss: 1.6138, kl_loss: 0.0400, seg_loss: 4.4047...
2024-04-08 20:45:20,571 - train_coco_unicam_resume.py - INFO: Iter: 12000; Elasped: 1:43:55; ETA: 9:48:51; LR: 5.184e-05; cls_loss: 0.0497, cls_loss_aux: 0.0584, ptc_loss: 0.1365, aff_loss: 1.6131, kl_loss: 0.0440, seg_loss: 4.4054...
2024-04-08 20:45:20,595 - train_coco_unicam_resume.py - INFO: Saving_12000_cpt...
2024-04-08 20:50:08,391 - train_coco_unicam_resume.py - INFO: Iter: 12200; Elasped: 1:48:43; ETA: 10:04:10; LR: 5.170e-05; cls_loss: 0.0469, cls_loss_aux: 0.0545, ptc_loss: 0.1193, aff_loss: 1.5751, kl_loss: 0.0403, seg_loss: 4.4051...
2024-04-08 20:54:57,698 - train_coco_unicam_resume.py - INFO: Iter: 12400; Elasped: 1:53:32; ETA: 10:18:56; LR: 5.156e-05; cls_loss: 0.0524, cls_loss_aux: 0.0604, ptc_loss: 0.1169, aff_loss: 1.5448, kl_loss: 0.0412, seg_loss: 4.4061...
2024-04-08 20:59:46,772 - train_coco_unicam_resume.py - INFO: Iter: 12600; Elasped: 1:58:21; ETA: 10:33:04; LR: 5.142e-05; cls_loss: 0.0518, cls_loss_aux: 0.0592, ptc_loss: 0.1254, aff_loss: 1.5365, kl_loss: 0.0429, seg_loss: 4.4046...
2024-04-08 21:04:34,698 - train_coco_unicam_resume.py - INFO: Iter: 12800; Elasped: 2:03:09; ETA: 10:46:32; LR: 5.129e-05; cls_loss: 0.0542, cls_loss_aux: 0.0631, ptc_loss: 0.1203, aff_loss: 1.5305, kl_loss: 0.0407, seg_loss: 4.4036...
2024-04-08 21:09:20,594 - train_coco_unicam_resume.py - INFO: Iter: 13000; Elasped: 2:07:55; ETA: 10:59:15; LR: 5.115e-05; cls_loss: 0.0489, cls_loss_aux: 0.0570, ptc_loss: 0.1211, aff_loss: 1.5194, kl_loss: 0.0404, seg_loss: 4.4044...
2024-04-08 21:09:20,609 - train_coco_unicam_resume.py - INFO: Saving_13000_cpt...
2024-04-08 21:14:09,095 - train_coco_unicam_resume.py - INFO: Iter: 13200; Elasped: 2:12:44; ETA: 11:11:42; LR: 5.101e-05; cls_loss: 0.0494, cls_loss_aux: 0.0560, ptc_loss: 0.1117, aff_loss: 1.5135, kl_loss: 0.0419, seg_loss: 4.4044...
2024-04-08 21:18:56,069 - train_coco_unicam_resume.py - INFO: Iter: 13400; Elasped: 2:17:31; ETA: 11:23:28; LR: 5.087e-05; cls_loss: 0.0471, cls_loss_aux: 0.0540, ptc_loss: 0.1143, aff_loss: 1.5162, kl_loss: 0.0388, seg_loss: 4.4040...
2024-04-08 21:23:42,942 - train_coco_unicam_resume.py - INFO: Iter: 13600; Elasped: 2:22:17; ETA: 11:34:40; LR: 5.074e-05; cls_loss: 0.0506, cls_loss_aux: 0.0584, ptc_loss: 0.1119, aff_loss: 1.5126, kl_loss: 0.0403, seg_loss: 4.4043...
2024-04-08 21:28:30,688 - train_coco_unicam_resume.py - INFO: Iter: 13800; Elasped: 2:27:05; ETA: 11:45:34; LR: 5.060e-05; cls_loss: 0.0475, cls_loss_aux: 0.0543, ptc_loss: 0.1116, aff_loss: 1.5099, kl_loss: 0.0398, seg_loss: 4.4050...
2024-04-08 21:33:17,705 - train_coco_unicam_resume.py - INFO: Iter: 14000; Elasped: 2:31:52; ETA: 11:55:56; LR: 5.046e-05; cls_loss: 0.0474, cls_loss_aux: 0.0559, ptc_loss: 0.1021, aff_loss: 1.5011, kl_loss: 0.0373, seg_loss: 4.4027...
2024-04-08 21:33:17,706 - train_coco_unicam_resume.py - INFO: Saving_14000_cpt...
2024-04-08 21:38:05,789 - train_coco_unicam_resume.py - INFO: Iter: 14200; Elasped: 2:36:40; ETA: 12:05:57; LR: 5.032e-05; cls_loss: 0.0487, cls_loss_aux: 0.0574, ptc_loss: 0.1078, aff_loss: 1.4974, kl_loss: 0.0384, seg_loss: 4.4052...
2024-04-08 21:42:52,877 - train_coco_unicam_resume.py - INFO: Iter: 14400; Elasped: 2:41:27; ETA: 12:15:29; LR: 5.019e-05; cls_loss: 0.0485, cls_loss_aux: 0.0546, ptc_loss: 0.1080, aff_loss: 1.4989, kl_loss: 0.0414, seg_loss: 4.4040...
2024-04-08 21:47:39,716 - train_coco_unicam_resume.py - INFO: Iter: 14600; Elasped: 2:46:14; ETA: 12:24:38; LR: 5.005e-05; cls_loss: 0.0525, cls_loss_aux: 0.0597, ptc_loss: 0.1155, aff_loss: 1.4958, kl_loss: 0.0409, seg_loss: 4.4035...
2024-04-08 21:52:26,282 - train_coco_unicam_resume.py - INFO: Iter: 14800; Elasped: 2:51:01; ETA: 12:33:23; LR: 4.991e-05; cls_loss: 0.0490, cls_loss_aux: 0.0576, ptc_loss: 0.0994, aff_loss: 1.4943, kl_loss: 0.0380, seg_loss: 4.4037...
2024-04-08 21:57:13,190 - train_coco_unicam_resume.py - INFO: Iter: 15000; Elasped: 2:55:48; ETA: 12:41:48; LR: 4.977e-05; cls_loss: 0.0492, cls_loss_aux: 0.0564, ptc_loss: 0.1077, aff_loss: 1.4858, kl_loss: 0.0424, seg_loss: 4.4022...
2024-04-08 21:57:13,191 - train_coco_unicam_resume.py - INFO: Saving_15000_cpt...
2024-04-08 22:02:01,291 - train_coco_unicam_resume.py - INFO: Iter: 15200; Elasped: 3:00:36; ETA: 12:49:55; LR: 4.964e-05; cls_loss: 0.0418, cls_loss_aux: 0.0482, ptc_loss: 0.1067, aff_loss: 1.4922, kl_loss: 0.0380, seg_loss: 4.4039...
2024-04-08 22:06:48,164 - train_coco_unicam_resume.py - INFO: Iter: 15400; Elasped: 3:05:23; ETA: 12:57:38; LR: 4.950e-05; cls_loss: 0.0475, cls_loss_aux: 0.0566, ptc_loss: 0.0977, aff_loss: 1.4980, kl_loss: 0.0391, seg_loss: 4.4038...
2024-04-08 22:11:34,738 - train_coco_unicam_resume.py - INFO: Iter: 15600; Elasped: 3:10:09; ETA: 13:04:58; LR: 4.936e-05; cls_loss: 0.0446, cls_loss_aux: 0.0505, ptc_loss: 0.0973, aff_loss: 1.4947, kl_loss: 0.0375, seg_loss: 4.4024...
2024-04-08 22:16:21,252 - train_coco_unicam_resume.py - INFO: Iter: 15800; Elasped: 3:14:56; ETA: 13:12:04; LR: 4.922e-05; cls_loss: 0.0503, cls_loss_aux: 0.0582, ptc_loss: 0.1024, aff_loss: 1.4901, kl_loss: 0.0415, seg_loss: 4.4027...
2024-04-08 22:21:08,266 - train_coco_unicam_resume.py - INFO: Iter: 16000; Elasped: 3:19:43; ETA: 13:18:52; LR: 4.908e-05; cls_loss: 0.0476, cls_loss_aux: 0.0553, ptc_loss: 0.0980, aff_loss: 1.4935, kl_loss: 0.0397, seg_loss: 4.4042...
2024-04-08 22:21:08,267 - train_coco_unicam_resume.py - INFO: Saving_16000_cpt...
2024-04-08 22:25:58,381 - train_coco_unicam_resume.py - INFO: Iter: 16200; Elasped: 3:24:33; ETA: 13:25:34; LR: 4.895e-05; cls_loss: 0.0560, cls_loss_aux: 0.0663, ptc_loss: 0.1216, aff_loss: 1.4898, kl_loss: 0.0433, seg_loss: 1.6763...
2024-04-08 22:30:44,970 - train_coco_unicam_resume.py - INFO: Iter: 16400; Elasped: 3:29:19; ETA: 13:31:44; LR: 4.881e-05; cls_loss: 0.0494, cls_loss_aux: 0.0562, ptc_loss: 0.1116, aff_loss: 1.4950, kl_loss: 0.0402, seg_loss: 0.8487...
2024-04-08 22:35:35,244 - train_coco_unicam_resume.py - INFO: Iter: 16600; Elasped: 3:34:10; ETA: 13:37:57; LR: 4.867e-05; cls_loss: 0.0540, cls_loss_aux: 0.0643, ptc_loss: 0.1195, aff_loss: 1.4912, kl_loss: 0.0403, seg_loss: 0.7580...
2024-04-08 22:40:22,388 - train_coco_unicam_resume.py - INFO: Iter: 16800; Elasped: 3:38:57; ETA: 13:43:40; LR: 4.853e-05; cls_loss: 0.0500, cls_loss_aux: 0.0567, ptc_loss: 0.1091, aff_loss: 1.4981, kl_loss: 0.0387, seg_loss: 0.6498...
2024-04-08 22:45:08,717 - train_coco_unicam_resume.py - INFO: Iter: 17000; Elasped: 3:43:43; ETA: 13:49:04; LR: 4.839e-05; cls_loss: 0.0489, cls_loss_aux: 0.0583, ptc_loss: 0.1180, aff_loss: 1.4928, kl_loss: 0.0420, seg_loss: 0.6155...
2024-04-08 22:45:08,717 - train_coco_unicam_resume.py - INFO: Saving_17000_cpt...
2024-04-08 22:49:56,828 - train_coco_unicam_resume.py - INFO: Iter: 17200; Elasped: 3:48:31; ETA: 13:54:21; LR: 4.825e-05; cls_loss: 0.0485, cls_loss_aux: 0.0569, ptc_loss: 0.1196, aff_loss: 1.4876, kl_loss: 0.0392, seg_loss: 0.6507...
2024-04-08 22:54:43,598 - train_coco_unicam_resume.py - INFO: Iter: 17400; Elasped: 3:53:18; ETA: 13:59:20; LR: 4.812e-05; cls_loss: 0.0512, cls_loss_aux: 0.0603, ptc_loss: 0.1171, aff_loss: 1.4905, kl_loss: 0.0407, seg_loss: 0.5829...
2024-04-08 22:59:30,161 - train_coco_unicam_resume.py - INFO: Iter: 17600; Elasped: 3:58:05; ETA: 14:04:06; LR: 4.798e-05; cls_loss: 0.0510, cls_loss_aux: 0.0575, ptc_loss: 0.1132, aff_loss: 1.4861, kl_loss: 0.0388, seg_loss: 0.5462...
2024-04-08 23:04:17,050 - train_coco_unicam_resume.py - INFO: Iter: 17800; Elasped: 4:02:52; ETA: 14:08:40; LR: 4.784e-05; cls_loss: 0.0479, cls_loss_aux: 0.0545, ptc_loss: 0.1226, aff_loss: 1.4897, kl_loss: 0.0398, seg_loss: 0.5870...
2024-04-08 23:09:03,587 - train_coco_unicam_resume.py - INFO: Iter: 18000; Elasped: 4:07:38; ETA: 14:12:57; LR: 4.770e-05; cls_loss: 0.0465, cls_loss_aux: 0.0548, ptc_loss: 0.1042, aff_loss: 1.4826, kl_loss: 0.0373, seg_loss: 0.5105...
2024-04-08 23:09:03,588 - train_coco_unicam_resume.py - INFO: Saving_18000_cpt...
2024-04-08 23:13:52,716 - train_coco_unicam_resume.py - INFO: Iter: 18200; Elasped: 4:12:27; ETA: 14:17:13; LR: 4.756e-05; cls_loss: 0.0502, cls_loss_aux: 0.0580, ptc_loss: 0.1180, aff_loss: 1.4862, kl_loss: 0.0387, seg_loss: 0.5549...
2024-04-08 23:18:41,239 - train_coco_unicam_resume.py - INFO: Iter: 18400; Elasped: 4:17:16; ETA: 14:21:17; LR: 4.742e-05; cls_loss: 0.0496, cls_loss_aux: 0.0586, ptc_loss: 0.1143, aff_loss: 1.4905, kl_loss: 0.0379, seg_loss: 0.5362...
2024-04-08 23:23:28,899 - train_coco_unicam_resume.py - INFO: Iter: 18600; Elasped: 4:22:03; ETA: 14:25:02; LR: 4.729e-05; cls_loss: 0.0495, cls_loss_aux: 0.0571, ptc_loss: 0.1013, aff_loss: 1.4880, kl_loss: 0.0382, seg_loss: 0.5132...
2024-04-08 23:28:17,079 - train_coco_unicam_resume.py - INFO: Iter: 18800; Elasped: 4:26:52; ETA: 14:28:44; LR: 4.715e-05; cls_loss: 0.0541, cls_loss_aux: 0.0646, ptc_loss: 0.1059, aff_loss: 1.4897, kl_loss: 0.0374, seg_loss: 0.5223...
2024-04-08 23:33:05,016 - train_coco_unicam_resume.py - INFO: Iter: 19000; Elasped: 4:31:40; ETA: 14:32:11; LR: 4.701e-05; cls_loss: 0.0546, cls_loss_aux: 0.0624, ptc_loss: 0.1061, aff_loss: 1.4885, kl_loss: 0.0364, seg_loss: 0.4945...
2024-04-08 23:33:05,016 - train_coco_unicam_resume.py - INFO: Saving_19000_cpt...
2024-04-08 23:37:54,377 - train_coco_unicam_resume.py - INFO: Iter: 19200; Elasped: 4:36:29; ETA: 14:35:31; LR: 4.687e-05; cls_loss: 0.0516, cls_loss_aux: 0.0599, ptc_loss: 0.1112, aff_loss: 1.4840, kl_loss: 0.0383, seg_loss: 0.5247...
2024-04-08 23:42:46,751 - train_coco_unicam_resume.py - INFO: Iter: 19400; Elasped: 4:41:21; ETA: 14:38:51; LR: 4.673e-05; cls_loss: 0.0463, cls_loss_aux: 0.0528, ptc_loss: 0.0975, aff_loss: 1.4855, kl_loss: 0.0358, seg_loss: 0.4656...
2024-04-08 23:47:34,518 - train_coco_unicam_resume.py - INFO: Iter: 19600; Elasped: 4:46:09; ETA: 14:41:48; LR: 4.659e-05; cls_loss: 0.0471, cls_loss_aux: 0.0532, ptc_loss: 0.1003, aff_loss: 1.4825, kl_loss: 0.0361, seg_loss: 0.4633...
2024-04-08 23:52:22,684 - train_coco_unicam_resume.py - INFO: Iter: 19800; Elasped: 4:50:57; ETA: 14:44:36; LR: 4.645e-05; cls_loss: 0.0508, cls_loss_aux: 0.0561, ptc_loss: 0.1072, aff_loss: 1.4831, kl_loss: 0.0367, seg_loss: 0.4478...
2024-04-08 23:57:11,247 - train_coco_unicam_resume.py - INFO: Iter: 20000; Elasped: 4:55:46; ETA: 14:47:18; LR: 4.631e-05; cls_loss: 0.0485, cls_loss_aux: 0.0563, ptc_loss: 0.1064, aff_loss: 1.4856, kl_loss: 0.0377, seg_loss: 0.5082...
2024-04-08 23:57:11,248 - train_coco_unicam_resume.py - INFO: Validating...
2024-04-09 00:28:14,912 - train_coco_unicam_resume.py - INFO: val cls score: 0.779125
2024-04-09 00:28:14,916 - train_coco_unicam_resume.py - INFO:
+------------------+--------+---------+---------+--------+----------+
| Class | CAM | aux_CAM | aff_Map | dr_Map | Seg_Pred |
+==================+========+=========+=========+========+==========+
| _background_ | 75.113 | 70.835 | 76.670 | 74.778 | 76.161 |
+------------------+--------+---------+---------+--------+----------+
| person | 51.510 | 43.108 | 50.398 | 51.401 | 51.689 |
+------------------+--------+---------+---------+--------+----------+
| bicycle | 42.205 | 41.482 | 42.926 | 42.339 | 34.750 |
+------------------+--------+---------+---------+--------+----------+
| car | 43.982 | 36.841 | 45.483 | 43.707 | 42.332 |
+------------------+--------+---------+---------+--------+----------+
| motorcycle | 62.700 | 58.236 | 61.040 | 62.477 | 63.940 |
+------------------+--------+---------+---------+--------+----------+
| airplane | 70.009 | 70.873 | 72.028 | 68.997 | 69.253 |
+------------------+--------+---------+---------+--------+----------+
| bus | 60.202 | 53.095 | 59.414 | 60.521 | 62.911 |
+------------------+--------+---------+---------+--------+----------+
| train | 53.369 | 51.723 | 53.528 | 53.136 | 50.817 |
+------------------+--------+---------+---------+--------+----------+
| truck | 48.286 | 42.295 | 48.110 | 48.518 | 37.491 |
+------------------+--------+---------+---------+--------+----------+
| boat | 51.375 | 38.253 | 51.313 | 51.405 | 49.793 |
+------------------+--------+---------+---------+--------+----------+
| traffic light | 20.267 | 23.760 | 22.488 | 19.933 | 46.567 |
+------------------+--------+---------+---------+--------+----------+
| fire hydrant | 56.689 | 49.944 | 58.319 | 55.795 | 64.537 |
+------------------+--------+---------+---------+--------+----------+
| stop sign | 44.923 | 74.471 | 49.618 | 44.101 | 54.883 |
+------------------+--------+---------+---------+--------+----------+
| parking meter | 57.889 | 54.278 | 59.185 | 57.528 | 60.215 |
+------------------+--------+---------+---------+--------+----------+
| bench | 35.512 | 27.110 | 35.994 | 36.027 | 29.715 |
+------------------+--------+---------+---------+--------+----------+
| bird | 40.779 | 57.674 | 43.575 | 40.342 | 49.997 |
+------------------+--------+---------+---------+--------+----------+
| cat | 74.694 | 69.194 | 74.668 | 75.724 | 66.294 |
+------------------+--------+---------+---------+--------+----------+
| dog | 71.940 | 56.521 | 73.172 | 72.715 | 56.908 |
+------------------+--------+---------+---------+--------+----------+
| horse | 63.112 | 58.765 | 64.163 | 62.884 | 61.191 |
+------------------+--------+---------+---------+--------+----------+
| sheep | 71.922 | 72.031 | 74.082 | 71.552 | 73.177 |
+------------------+--------+---------+---------+--------+----------+
| cow | 66.615 | 56.651 | 66.330 | 66.967 | 56.585 |
+------------------+--------+---------+---------+--------+----------+
| elephant | 73.233 | 66.383 | 72.846 | 73.877 | 74.162 |
+------------------+--------+---------+---------+--------+----------+
| bear | 78.764 | 75.960 | 80.120 | 79.288 | 74.356 |
+------------------+--------+---------+---------+--------+----------+
| zebra | 79.335 | 76.208 | 77.312 | 79.022 | 77.346 |
+------------------+--------+---------+---------+--------+----------+
| giraffe | 74.691 | 71.223 | 71.979 | 74.475 | 68.531 |
+------------------+--------+---------+---------+--------+----------+
| backpack | 9.959 | 6.984 | 10.922 | 10.101 | 12.105 |
+------------------+--------+---------+---------+--------+----------+
| umbrella | 58.839 | 50.035 | 59.945 | 60.428 | 61.599 |
+------------------+--------+---------+---------+--------+----------+
| handbag | 8.731 | 9.921 | 6.606 | 8.964 | 0.379 |
+------------------+--------+---------+---------+--------+----------+
| tie | 14.196 | 21.538 | 14.456 | 13.982 | 18.337 |
+------------------+--------+---------+---------+--------+----------+
| suitcase | 52.565 | 40.756 | 50.558 | 53.229 | 46.047 |
+------------------+--------+---------+---------+--------+----------+
| frisbee | 14.095 | 43.806 | 14.866 | 13.933 | 15.773 |
+------------------+--------+---------+---------+--------+----------+
| skis | 4.921 | 4.321 | 4.958 | 4.837 | 4.283 |
+------------------+--------+---------+---------+--------+----------+
| snowboard | 7.876 | 7.733 | 7.327 | 7.796 | 7.731 |
+------------------+--------+---------+---------+--------+----------+
| sports ball | 3.774 | 5.066 | 2.794 | 3.737 | 4.889 |
+------------------+--------+---------+---------+--------+----------+
| kite | 13.714 | 28.935 | 15.030 | 13.427 | 12.659 |
+------------------+--------+---------+---------+--------+----------+
| baseball bat | 1.831 | 1.677 | 0.885 | 1.809 | 2.117 |
+------------------+--------+---------+---------+--------+----------+
| baseball glove | 4.217 | 7.888 | 4.636 | 4.177 | 1.109 |
+------------------+--------+---------+---------+--------+----------+
| skateboard | 8.539 | 8.760 | 7.635 | 8.478 | 6.287 |
+------------------+--------+---------+---------+--------+----------+
| surfboard | 9.248 | 8.009 | 9.117 | 9.105 | 7.277 |
+------------------+--------+---------+---------+--------+----------+
| tennis racket | 5.669 | 4.745 | 4.617 | 5.577 | 2.919 |
+------------------+--------+---------+---------+--------+----------+
| bottle | 23.395 | 14.362 | 19.775 | 23.226 | 15.694 |
+------------------+--------+---------+---------+--------+----------+
| wine glass | 25.266 | 16.809 | 23.634 | 25.731 | 20.516 |
+------------------+--------+---------+---------+--------+----------+
| cup | 27.076 | 13.858 | 25.870 | 27.035 | 13.544 |
+------------------+--------+---------+---------+--------+----------+
| fork | 3.940 | 5.430 | 3.583 | 4.054 | 0.000 |
+------------------+--------+---------+---------+--------+----------+
| knife | 4.466 | 15.319 | 3.385 | 4.378 | 1.682 |
+------------------+--------+---------+---------+--------+----------+
| spoon | 3.285 | 3.479 | 2.717 | 3.295 | 0.128 |
+------------------+--------+---------+---------+--------+----------+
| bowl | 25.511 | 15.697 | 24.088 | 26.491 | 11.763 |
+------------------+--------+---------+---------+--------+----------+
| banana | 73.133 | 63.948 | 72.119 | 73.568 | 63.037 |
+------------------+--------+---------+---------+--------+----------+
| apple | 51.298 | 49.774 | 49.428 | 51.154 | 40.307 |
+------------------+--------+---------+---------+--------+----------+
| sandwich | 50.046 | 38.285 | 52.015 | 50.481 | 39.617 |
+------------------+--------+---------+---------+--------+----------+
| orange | 71.116 | 67.602 | 69.270 | 71.231 | 65.451 |
+------------------+--------+---------+---------+--------+----------+
| broccoli | 59.113 | 55.056 | 58.529 | 59.535 | 50.822 |
+------------------+--------+---------+---------+--------+----------+
| carrot | 52.692 | 59.689 | 48.175 | 51.821 | 24.143 |
+------------------+--------+---------+---------+--------+----------+
| hot dog | 57.761 | 54.075 | 61.360 | 57.586 | 52.143 |
+------------------+--------+---------+---------+--------+----------+
| pizza | 65.804 | 64.848 | 66.521 | 67.597 | 56.972 |
+------------------+--------+---------+---------+--------+----------+
| donut | 68.117 | 67.864 | 74.501 | 68.626 | 61.366 |
+------------------+--------+---------+---------+--------+----------+
| cake | 52.617 | 47.749 | 55.425 | 52.893 | 45.475 |
+------------------+--------+---------+---------+--------+----------+
| chair | 29.025 | 22.963 | 26.030 | 29.173 | 20.281 |
+------------------+--------+---------+---------+--------+----------+
| couch | 49.982 | 49.898 | 48.668 | 50.191 | 33.404 |
+------------------+--------+---------+---------+--------+----------+
| potted plant | 18.141 | 13.676 | 15.705 | 18.346 | 5.564 |
+------------------+--------+---------+---------+--------+----------+
| bed | 57.522 | 55.158 | 57.735 | 58.052 | 50.481 |
+------------------+--------+---------+---------+--------+----------+
| dining table | 30.323 | 36.677 | 29.744 | 31.313 | 24.036 |
+------------------+--------+---------+---------+--------+----------+
| toilet | 60.173 | 54.531 | 59.012 | 60.975 | 54.160 |
+------------------+--------+---------+---------+--------+----------+
| tv | 49.189 | 35.372 | 45.967 | 49.680 | 41.635 |
+------------------+--------+---------+---------+--------+----------+
| laptop | 47.490 | 46.305 | 42.627 | 47.945 | 37.790 |
+------------------+--------+---------+---------+--------+----------+
| mouse | 9.099 | 18.976 | 7.875 | 8.946 | 3.126 |
+------------------+--------+---------+---------+--------+----------+
| remote | 25.398 | 28.968 | 27.673 | 25.265 | 45.901 |
+------------------+--------+---------+---------+--------+----------+
| keyboard | 35.254 | 42.054 | 31.577 | 35.783 | 25.650 |
+------------------+--------+---------+---------+--------+----------+
| cell phone | 26.429 | 39.710 | 27.202 | 26.135 | 27.716 |
+------------------+--------+---------+---------+--------+----------+
| microwave | 31.595 | 44.053 | 27.687 | 31.090 | 28.079 |
+------------------+--------+---------+---------+--------+----------+
| oven | 38.220 | 28.018 | 37.567 | 38.502 | 28.318 |
+------------------+--------+---------+---------+--------+----------+
| toaster | 15.402 | 9.198 | 7.305 | 15.445 | 0 |
+------------------+--------+---------+---------+--------+----------+
| sink | 30.364 | 25.975 | 29.695 | 30.419 | 24.446 |
+------------------+--------+---------+---------+--------+----------+
| refrigerator | 54.815 | 48.947 | 53.918 | 56.223 | 48.478 |
+------------------+--------+---------+---------+--------+----------+
| book | 35.482 | 32.876 | 34.675 | 36.146 | 28.449 |
+------------------+--------+---------+---------+--------+----------+
| clock | 40.589 | 23.044 | 45.061 | 40.737 | 45.678 |
+------------------+--------+---------+---------+--------+----------+
| vase | 31.536 | 22.273 | 30.572 | 31.000 | 29.539 |
+------------------+--------+---------+---------+--------+----------+
| scissors | 27.840 | 49.798 | 27.336 | 27.022 | 32.828 |
+------------------+--------+---------+---------+--------+----------+
| teddy bear | 66.078 | 61.972 | 65.473 | 66.197 | 60.675 |
+------------------+--------+---------+---------+--------+----------+
| hair drier | 12.903 | 4.366 | 11.832 | 12.654 | 0 |
+------------------+--------+---------+---------+--------+----------+
| toothbrush | 18.529 | 32.106 | 19.263 | 18.199 | 16.472 |
+------------------+--------+---------+---------+--------+----------+
| m-Precision | 49.681 | 52.744 | 51.560 | 49.098 | 49.859 |
+------------------+--------+---------+---------+--------+----------+
| m-Recall | 70.382 | 64.062 | 63.736 | 71.499 | 54.158 |
+------------------+--------+---------+---------+--------+----------+
| m-ConfutionRatio | 4.279 | 3.895 | 5.286 | 4.331 | inf |
+------------------+--------+---------+---------+--------+----------+
| m-IoU | 40.041 | 38.615 | 39.749 | 40.139 | 36.203 |
+------------------+--------+---------+---------+--------+----------+
2024-04-09 00:28:14,916 - train_coco_unicam_resume.py - INFO: Saving_20000_cpt...
2024-04-09 00:33:29,110 - train_coco_unicam_resume.py - INFO: Iter: 20200; Elasped: 5:32:04; ETA: 16:23:02; LR: 4.618e-05; cls_loss: 0.0475, cls_loss_aux: 0.0538, ptc_loss: 0.0986, aff_loss: 1.4845, kl_loss: 0.0381, seg_loss: 0.5035...
2024-04-09 00:38:18,738 - train_coco_unicam_resume.py - INFO: Iter: 20400; Elasped: 5:36:53; ETA: 16:24:13; LR: 4.604e-05; cls_loss: 0.0511, cls_loss_aux: 0.0575, ptc_loss: 0.0987, aff_loss: 1.4780, kl_loss: 0.0361, seg_loss: 0.4488...
2024-04-09 00:43:06,502 - train_coco_unicam_resume.py - INFO: Iter: 20600; Elasped: 5:41:41; ETA: 16:25:14; LR: 4.590e-05; cls_loss: 0.0434, cls_loss_aux: 0.0488, ptc_loss: 0.0971, aff_loss: 1.4914, kl_loss: 0.0332, seg_loss: 0.4378...
2024-04-09 00:47:55,073 - train_coco_unicam_resume.py - INFO: Iter: 20800; Elasped: 5:46:30; ETA: 16:26:11; LR: 4.576e-05; cls_loss: 0.0490, cls_loss_aux: 0.0547, ptc_loss: 0.0840, aff_loss: 1.4893, kl_loss: 0.0356, seg_loss: 0.4694...
2024-04-09 00:52:45,411 - train_coco_unicam_resume.py - INFO: Iter: 21000; Elasped: 5:51:20; ETA: 16:27:04; LR: 4.562e-05; cls_loss: 0.0488, cls_loss_aux: 0.0557, ptc_loss: 0.1031, aff_loss: 1.4920, kl_loss: 0.0370, seg_loss: 0.4717...
2024-04-09 00:52:45,411 - train_coco_unicam_resume.py - INFO: Saving_21000_cpt...
2024-04-09 00:57:37,374 - train_coco_unicam_resume.py - INFO: Iter: 21200; Elasped: 5:56:12; ETA: 16:27:57; LR: 4.548e-05; cls_loss: 0.0508, cls_loss_aux: 0.0563, ptc_loss: 0.0996, aff_loss: 1.4826, kl_loss: 0.0369, seg_loss: 0.4787...
2024-04-09 01:02:27,355 - train_coco_unicam_resume.py - INFO: Iter: 21400; Elasped: 6:01:02; ETA: 16:28:37; LR: 4.534e-05; cls_loss: 0.0468, cls_loss_aux: 0.0540, ptc_loss: 0.1118, aff_loss: 1.4811, kl_loss: 0.0375, seg_loss: 0.4601...
2024-04-09 01:07:17,555 - train_coco_unicam_resume.py - INFO: Iter: 21600; Elasped: 6:05:52; ETA: 16:29:11; LR: 4.520e-05; cls_loss: 0.0439, cls_loss_aux: 0.0498, ptc_loss: 0.0990, aff_loss: 1.4856, kl_loss: 0.0346, seg_loss: 0.4217...
2024-04-09 01:12:06,633 - train_coco_unicam_resume.py - INFO: Iter: 21800; Elasped: 6:10:41; ETA: 16:29:37; LR: 4.506e-05; cls_loss: 0.0444, cls_loss_aux: 0.0497, ptc_loss: 0.0997, aff_loss: 1.4811, kl_loss: 0.0346, seg_loss: 0.4103...
2024-04-09 01:16:55,428 - train_coco_unicam_resume.py - INFO: Iter: 22000; Elasped: 6:15:30; ETA: 16:29:57; LR: 4.492e-05; cls_loss: 0.0455, cls_loss_aux: 0.0513, ptc_loss: 0.1173, aff_loss: 1.4814, kl_loss: 0.0372, seg_loss: 0.4538...
2024-04-09 01:16:55,428 - train_coco_unicam_resume.py - INFO: Saving_22000_cpt...
2024-04-09 01:21:44,944 - train_coco_unicam_resume.py - INFO: Iter: 22200; Elasped: 6:20:19; ETA: 16:30:11; LR: 4.478e-05; cls_loss: 0.0478, cls_loss_aux: 0.0546, ptc_loss: 0.1092, aff_loss: 1.4828, kl_loss: 0.0368, seg_loss: 0.4847...
2024-04-09 01:26:32,339 - train_coco_unicam_resume.py - INFO: Iter: 22400; Elasped: 6:25:07; ETA: 16:30:18; LR: 4.464e-05; cls_loss: 0.0480, cls_loss_aux: 0.0548, ptc_loss: 0.1018, aff_loss: 1.4824, kl_loss: 0.0376, seg_loss: 0.4345...
2024-04-09 01:31:20,305 - train_coco_unicam_resume.py - INFO: Iter: 22600; Elasped: 6:29:55; ETA: 16:30:19; LR: 4.450e-05; cls_loss: 0.0474, cls_loss_aux: 0.0536, ptc_loss: 0.0986, aff_loss: 1.4789, kl_loss: 0.0369, seg_loss: 0.4489...
2024-04-09 01:36:07,168 - train_coco_unicam_resume.py - INFO: Iter: 22800; Elasped: 6:34:42; ETA: 16:30:12; LR: 4.436e-05; cls_loss: 0.0448, cls_loss_aux: 0.0514, ptc_loss: 0.0990, aff_loss: 1.4819, kl_loss: 0.0346, seg_loss: 0.4281...
2024-04-09 01:40:54,110 - train_coco_unicam_resume.py - INFO: Iter: 23000; Elasped: 6:39:29; ETA: 16:30:01; LR: 4.422e-05; cls_loss: 0.0443, cls_loss_aux: 0.0517, ptc_loss: 0.0886, aff_loss: 1.4775, kl_loss: 0.0325, seg_loss: 0.4318...
2024-04-09 01:40:54,118 - train_coco_unicam_resume.py - INFO: Saving_23000_cpt...
2024-04-09 01:45:43,407 - train_coco_unicam_resume.py - INFO: Iter: 23200; Elasped: 6:44:18; ETA: 16:29:50; LR: 4.408e-05; cls_loss: 0.0512, cls_loss_aux: 0.0557, ptc_loss: 0.1089, aff_loss: 1.4776, kl_loss: 0.0375, seg_loss: 0.5182...
2024-04-09 01:50:34,891 - train_coco_unicam_resume.py - INFO: Iter: 23400; Elasped: 6:49:09; ETA: 16:29:39; LR: 4.395e-05; cls_loss: 0.0436, cls_loss_aux: 0.0506, ptc_loss: 0.0952, aff_loss: 1.4844, kl_loss: 0.0339, seg_loss: 0.3722...
2024-04-09 01:55:24,089 - train_coco_unicam_resume.py - INFO: Iter: 23600; Elasped: 6:53:59; ETA: 16:29:21; LR: 4.381e-05; cls_loss: 0.0450, cls_loss_aux: 0.0515, ptc_loss: 0.0967, aff_loss: 1.4807, kl_loss: 0.0328, seg_loss: 0.4601...
2024-04-09 02:00:10,964 - train_coco_unicam_resume.py - INFO: Iter: 23800; Elasped: 6:58:45; ETA: 16:28:48; LR: 4.367e-05; cls_loss: 0.0443, cls_loss_aux: 0.0501, ptc_loss: 0.1000, aff_loss: 1.4816, kl_loss: 0.0344, seg_loss: 0.3930...
2024-04-09 02:04:58,782 - train_coco_unicam_resume.py - INFO: Iter: 24000; Elasped: 7:03:33; ETA: 16:28:17; LR: 4.353e-05; cls_loss: 0.0466, cls_loss_aux: 0.0528, ptc_loss: 0.0952, aff_loss: 1.4787, kl_loss: 0.0353, seg_loss: 0.3936...
2024-04-09 02:04:58,783 - train_coco_unicam_resume.py - INFO: Saving_24000_cpt...
2024-04-09 02:09:48,062 - train_coco_unicam_resume.py - INFO: Iter: 24200; Elasped: 7:08:23; ETA: 16:27:45; LR: 4.339e-05; cls_loss: 0.0457, cls_loss_aux: 0.0523, ptc_loss: 0.0874, aff_loss: 1.4767, kl_loss: 0.0329, seg_loss: 0.3404...
2024-04-09 02:14:35,824 - train_coco_unicam_resume.py - INFO: Iter: 24400; Elasped: 7:13:10; ETA: 16:27:03; LR: 4.325e-05; cls_loss: 0.0436, cls_loss_aux: 0.0496, ptc_loss: 0.0927, aff_loss: 1.4756, kl_loss: 0.0336, seg_loss: 0.4672...
2024-04-09 02:19:23,218 - train_coco_unicam_resume.py - INFO: Iter: 24600; Elasped: 7:17:58; ETA: 16:26:18; LR: 4.311e-05; cls_loss: 0.0471, cls_loss_aux: 0.0529, ptc_loss: 0.0823, aff_loss: 1.4755, kl_loss: 0.0344, seg_loss: 0.4068...
2024-04-09 02:24:10,088 - train_coco_unicam_resume.py - INFO: Iter: 24800; Elasped: 7:22:45; ETA: 16:25:28; LR: 4.297e-05; cls_loss: 0.0435, cls_loss_aux: 0.0516, ptc_loss: 0.0914, aff_loss: 1.4724, kl_loss: 0.0352, seg_loss: 0.3621...
2024-04-09 02:28:57,622 - train_coco_unicam_resume.py - INFO: Iter: 25000; Elasped: 7:27:32; ETA: 16:24:34; LR: 4.283e-05; cls_loss: 0.0490, cls_loss_aux: 0.0549, ptc_loss: 0.0975, aff_loss: 1.4708, kl_loss: 0.0359, seg_loss: 0.4254...
2024-04-09 02:28:57,623 - train_coco_unicam_resume.py - INFO: Saving_25000_cpt...
2024-04-09 02:33:47,099 - train_coco_unicam_resume.py - INFO: Iter: 25200; Elasped: 7:32:22; ETA: 16:23:43; LR: 4.269e-05; cls_loss: 0.0447, cls_loss_aux: 0.0512, ptc_loss: 0.0958, aff_loss: 1.4647, kl_loss: 0.0354, seg_loss: 0.3940...
2024-04-09 02:38:33,914 - train_coco_unicam_resume.py - INFO: Iter: 25400; Elasped: 7:37:08; ETA: 16:22:39; LR: 4.255e-05; cls_loss: 0.0439, cls_loss_aux: 0.0508, ptc_loss: 0.0981, aff_loss: 1.4753, kl_loss: 0.0331, seg_loss: 0.4015...
2024-04-09 02:43:20,669 - train_coco_unicam_resume.py - INFO: Iter: 25600; Elasped: 7:41:55; ETA: 16:21:34; LR: 4.240e-05; cls_loss: 0.0463, cls_loss_aux: 0.0533, ptc_loss: 0.0905, aff_loss: 1.4694, kl_loss: 0.0337, seg_loss: 0.4068...
2024-04-09 02:48:08,073 - train_coco_unicam_resume.py - INFO: Iter: 25800; Elasped: 7:46:43; ETA: 16:20:28; LR: 4.226e-05; cls_loss: 0.0446, cls_loss_aux: 0.0500, ptc_loss: 0.0867, aff_loss: 1.4628, kl_loss: 0.0330, seg_loss: 0.3712...
2024-04-09 02:52:54,604 - train_coco_unicam_resume.py - INFO: Iter: 26000; Elasped: 7:51:29; ETA: 16:19:14; LR: 4.212e-05; cls_loss: 0.0477, cls_loss_aux: 0.0541, ptc_loss: 0.0903, aff_loss: 1.4618, kl_loss: 0.0351, seg_loss: 0.4050...
2024-04-09 02:52:54,605 - train_coco_unicam_resume.py - INFO: Saving_26000_cpt...
2024-04-09 02:57:43,446 - train_coco_unicam_resume.py - INFO: Iter: 26200; Elasped: 7:56:18; ETA: 16:18:03; LR: 4.198e-05; cls_loss: 0.0450, cls_loss_aux: 0.0517, ptc_loss: 0.0887, aff_loss: 1.4575, kl_loss: 0.0346, seg_loss: 0.4025...
2024-04-09 03:02:30,170 - train_coco_unicam_resume.py - INFO: Iter: 26400; Elasped: 8:01:05; ETA: 16:16:44; LR: 4.184e-05; cls_loss: 0.0468, cls_loss_aux: 0.0539, ptc_loss: 0.0934, aff_loss: 1.4582, kl_loss: 0.0351, seg_loss: 0.4033...
2024-04-09 03:07:16,812 - train_coco_unicam_resume.py - INFO: Iter: 26600; Elasped: 8:05:51; ETA: 16:15:21; LR: 4.170e-05; cls_loss: 0.0426, cls_loss_aux: 0.0484, ptc_loss: 0.0931, aff_loss: 1.4499, kl_loss: 0.0354, seg_loss: 0.3915...
2024-04-09 03:12:03,372 - train_coco_unicam_resume.py - INFO: Iter: 26800; Elasped: 8:10:38; ETA: 16:13:56; LR: 4.156e-05; cls_loss: 0.0434, cls_loss_aux: 0.0507, ptc_loss: 0.0870, aff_loss: 1.4550, kl_loss: 0.0331, seg_loss: 0.3832...
2024-04-09 03:16:52,601 - train_coco_unicam_resume.py - INFO: Iter: 27000; Elasped: 8:15:27; ETA: 16:12:33; LR: 4.142e-05; cls_loss: 0.0411, cls_loss_aux: 0.0481, ptc_loss: 0.0894, aff_loss: 1.4581, kl_loss: 0.0352, seg_loss: 0.3769...
2024-04-09 03:16:52,602 - train_coco_unicam_resume.py - INFO: Saving_27000_cpt...
2024-04-09 03:21:42,142 - train_coco_unicam_resume.py - INFO: Iter: 27200; Elasped: 8:20:17; ETA: 16:11:08; LR: 4.128e-05; cls_loss: 0.0439, cls_loss_aux: 0.0505, ptc_loss: 0.0818, aff_loss: 1.4445, kl_loss: 0.0326, seg_loss: 0.4007...
2024-04-09 03:26:34,140 - train_coco_unicam_resume.py - INFO: Iter: 27400; Elasped: 8:25:09; ETA: 16:09:44; LR: 4.114e-05; cls_loss: 0.0431, cls_loss_aux: 0.0479, ptc_loss: 0.0953, aff_loss: 1.4511, kl_loss: 0.0346, seg_loss: 0.3394...
2024-04-09 03:31:23,698 - train_coco_unicam_resume.py - INFO: Iter: 27600; Elasped: 8:29:58; ETA: 16:08:11; LR: 4.100e-05; cls_loss: 0.0432, cls_loss_aux: 0.0476, ptc_loss: 0.0904, aff_loss: 1.4472, kl_loss: 0.0328, seg_loss: 0.3507...
2024-04-09 03:36:11,228 - train_coco_unicam_resume.py - INFO: Iter: 27800; Elasped: 8:34:46; ETA: 16:06:34; LR: 4.086e-05; cls_loss: 0.0517, cls_loss_aux: 0.0581, ptc_loss: 0.0881, aff_loss: 1.4492, kl_loss: 0.0335, seg_loss: 0.4688...
2024-04-09 03:40:58,502 - train_coco_unicam_resume.py - INFO: Iter: 28000; Elasped: 8:39:33; ETA: 16:04:52; LR: 4.072e-05; cls_loss: 0.0478, cls_loss_aux: 0.0545, ptc_loss: 0.1067, aff_loss: 1.4474, kl_loss: 0.0369, seg_loss: 0.4232...
2024-04-09 03:40:58,503 - train_coco_unicam_resume.py - INFO: Saving_28000_cpt...
2024-04-09 03:45:48,051 - train_coco_unicam_resume.py - INFO: Iter: 28200; Elasped: 8:44:23; ETA: 16:03:13; LR: 4.058e-05; cls_loss: 0.0459, cls_loss_aux: 0.0512, ptc_loss: 0.0888, aff_loss: 1.4477, kl_loss: 0.0345, seg_loss: 0.4075...
2024-04-09 03:50:35,989 - train_coco_unicam_resume.py - INFO: Iter: 28400; Elasped: 8:49:10; ETA: 16:01:26; LR: 4.044e-05; cls_loss: 0.0413, cls_loss_aux: 0.0472, ptc_loss: 0.0842, aff_loss: 1.4499, kl_loss: 0.0332, seg_loss: 0.3661...
2024-04-09 03:55:22,820 - train_coco_unicam_resume.py - INFO: Iter: 28600; Elasped: 8:53:57; ETA: 15:59:36; LR: 4.029e-05; cls_loss: 0.0448, cls_loss_aux: 0.0529, ptc_loss: 0.0820, aff_loss: 1.4500, kl_loss: 0.0317, seg_loss: 0.3744...
2024-04-09 04:00:10,358 - train_coco_unicam_resume.py - INFO: Iter: 28800; Elasped: 8:58:45; ETA: 15:57:46; LR: 4.015e-05; cls_loss: 0.0455, cls_loss_aux: 0.0524, ptc_loss: 0.0864, aff_loss: 1.4525, kl_loss: 0.0358, seg_loss: 0.3595...
2024-04-09 04:04:58,186 - train_coco_unicam_resume.py - INFO: Iter: 29000; Elasped: 9:03:33; ETA: 15:55:53; LR: 4.001e-05; cls_loss: 0.0462, cls_loss_aux: 0.0526, ptc_loss: 0.0791, aff_loss: 1.4392, kl_loss: 0.0347, seg_loss: 0.4174...
2024-04-09 04:04:58,187 - train_coco_unicam_resume.py - INFO: Saving_29000_cpt...
2024-04-09 04:09:48,578 - train_coco_unicam_resume.py - INFO: Iter: 29200; Elasped: 9:08:23; ETA: 15:54:02; LR: 3.987e-05; cls_loss: 0.0488, cls_loss_aux: 0.0562, ptc_loss: 0.0894, aff_loss: 1.4468, kl_loss: 0.0356, seg_loss: 0.4360...
2024-04-09 04:14:37,027 - train_coco_unicam_resume.py - INFO: Iter: 29400; Elasped: 9:13:12; ETA: 15:52:06; LR: 3.973e-05; cls_loss: 0.0492, cls_loss_aux: 0.0555, ptc_loss: 0.0901, aff_loss: 1.4485, kl_loss: 0.0378, seg_loss: 0.3980...
2024-04-09 04:19:29,473 - train_coco_unicam_resume.py - INFO: Iter: 29600; Elasped: 9:18:04; ETA: 15:50:13; LR: 3.959e-05; cls_loss: 0.0447, cls_loss_aux: 0.0495, ptc_loss: 0.0966, aff_loss: 1.4482, kl_loss: 0.0369, seg_loss: 0.3887...
2024-04-09 04:24:16,052 - train_coco_unicam_resume.py - INFO: Iter: 29800; Elasped: 9:22:51; ETA: 15:48:09; LR: 3.945e-05; cls_loss: 0.0407, cls_loss_aux: 0.0454, ptc_loss: 0.0871, aff_loss: 1.4412, kl_loss: 0.0345, seg_loss: 0.3330...
2024-04-09 04:29:02,490 - train_coco_unicam_resume.py - INFO: Iter: 30000; Elasped: 9:27:37; ETA: 15:46:01; LR: 3.931e-05; cls_loss: 0.0407, cls_loss_aux: 0.0472, ptc_loss: 0.0905, aff_loss: 1.4437, kl_loss: 0.0342, seg_loss: 0.3265...
2024-04-09 04:29:02,490 - train_coco_unicam_resume.py - INFO: Validating...
2024-04-09 05:00:02,882 - train_coco_unicam_resume.py - INFO: val cls score: 0.805077
2024-04-09 05:00:02,909 - train_coco_unicam_resume.py - INFO:
+------------------+--------+---------+---------+--------+----------+
| Class | CAM | aux_CAM | aff_Map | dr_Map | Seg_Pred |
+==================+========+=========+=========+========+==========+
| _background_ | 75.616 | 71.887 | 76.141 | 75.472 | 76.083 |
+------------------+--------+---------+---------+--------+----------+
| person | 38.634 | 34.490 | 38.436 | 38.837 | 41.143 |
+------------------+--------+---------+---------+--------+----------+
| bicycle | 41.052 | 30.519 | 36.716 | 41.540 | 28.721 |
+------------------+--------+---------+---------+--------+----------+
| car | 42.581 | 35.240 | 39.219 | 42.918 | 36.695 |
+------------------+--------+---------+---------+--------+----------+
| motorcycle | 56.961 | 51.387 | 53.834 | 57.529 | 58.750 |
+------------------+--------+---------+---------+--------+----------+
| airplane | 69.333 | 68.104 | 66.140 | 69.459 | 66.746 |
+------------------+--------+---------+---------+--------+----------+
| bus | 46.755 | 43.603 | 43.634 | 47.617 | 49.520 |
+------------------+--------+---------+---------+--------+----------+
| train | 51.553 | 49.148 | 49.631 | 51.755 | 49.584 |
+------------------+--------+---------+---------+--------+----------+
| truck | 39.570 | 37.423 | 37.345 | 39.942 | 35.519 |
+------------------+--------+---------+---------+--------+----------+
| boat | 42.830 | 42.548 | 35.998 | 43.814 | 39.607 |
+------------------+--------+---------+---------+--------+----------+
| traffic light | 23.357 | 37.562 | 22.828 | 23.011 | 40.861 |
+------------------+--------+---------+---------+--------+----------+
| fire hydrant | 62.965 | 38.499 | 63.065 | 62.514 | 68.053 |
+------------------+--------+---------+---------+--------+----------+
| stop sign | 60.230 | 54.239 | 67.396 | 59.645 | 69.011 |
+------------------+--------+---------+---------+--------+----------+
| parking meter | 64.440 | 48.566 | 64.061 | 64.010 | 62.016 |
+------------------+--------+---------+---------+--------+----------+
| bench | 38.125 | 41.612 | 35.423 | 38.810 | 34.315 |
+------------------+--------+---------+---------+--------+----------+
| bird | 48.424 | 57.244 | 49.790 | 48.430 | 55.705 |
+------------------+--------+---------+---------+--------+----------+
| cat | 71.235 | 59.858 | 69.849 | 72.267 | 66.705 |
+------------------+--------+---------+---------+--------+----------+
| dog | 69.505 | 60.960 | 68.055 | 70.791 | 63.462 |
+------------------+--------+---------+---------+--------+----------+
| horse | 66.403 | 60.655 | 63.086 | 66.450 | 65.529 |
+------------------+--------+---------+---------+--------+----------+
| sheep | 75.011 | 62.821 | 73.126 | 74.783 | 41.858 |
+------------------+--------+---------+---------+--------+----------+
| cow | 69.690 | 63.016 | 62.886 | 70.234 | 63.505 |
+------------------+--------+---------+---------+--------+----------+
| elephant | 69.101 | 63.958 | 66.223 | 70.051 | 75.328 |
+------------------+--------+---------+---------+--------+----------+
| bear | 73.611 | 66.596 | 73.035 | 74.852 | 76.089 |
+------------------+--------+---------+---------+--------+----------+
| zebra | 72.520 | 75.086 | 69.213 | 72.988 | 73.540 |
+------------------+--------+---------+---------+--------+----------+
| giraffe | 71.306 | 70.074 | 66.848 | 71.643 | 70.258 |
+------------------+--------+---------+---------+--------+----------+
| backpack | 19.638 | 7.998 | 17.963 | 19.707 | 11.564 |
+------------------+--------+---------+---------+--------+----------+
| umbrella | 59.728 | 65.419 | 58.115 | 60.102 | 66.277 |
+------------------+--------+---------+---------+--------+----------+
| handbag | 11.736 | 13.999 | 7.633 | 11.710 | 5.839 |
+------------------+--------+---------+---------+--------+----------+
| tie | 15.345 | 25.575 | 14.857 | 15.122 | 23.218 |
+------------------+--------+---------+---------+--------+----------+
| suitcase | 53.437 | 50.135 | 49.846 | 53.949 | 49.698 |
+------------------+--------+---------+---------+--------+----------+
| frisbee | 12.710 | 11.459 | 11.264 | 12.767 | 9.203 |
+------------------+--------+---------+---------+--------+----------+
| skis | 6.763 | 4.981 | 6.526 | 6.627 | 8.096 |
+------------------+--------+---------+---------+--------+----------+
| snowboard | 13.123 | 12.500 | 12.659 | 12.946 | 22.179 |
+------------------+--------+---------+---------+--------+----------+
| sports ball | 6.055 | 3.707 | 5.245 | 5.892 | 16.561 |
+------------------+--------+---------+---------+--------+----------+
| kite | 31.081 | 36.138 | 37.949 | 30.983 | 36.543 |
+------------------+--------+---------+---------+--------+----------+
| baseball bat | 1.589 | 1.614 | 0.862 | 1.552 | 0.968 |
+------------------+--------+---------+---------+--------+----------+
| baseball glove | 11.236 | 15.276 | 14.639 | 11.553 | 11.056 |
+------------------+--------+---------+---------+--------+----------+
| skateboard | 12.457 | 15.041 | 9.861 | 12.323 | 10.274 |
+------------------+--------+---------+---------+--------+----------+
| surfboard | 13.544 | 12.011 | 13.104 | 13.357 | 13.354 |
+------------------+--------+---------+---------+--------+----------+
| tennis racket | 6.942 | 5.510 | 5.326 | 6.884 | 3.618 |
+------------------+--------+---------+---------+--------+----------+
| bottle | 21.932 | 9.065 | 13.311 | 21.740 | 17.737 |
+------------------+--------+---------+---------+--------+----------+
| wine glass | 28.048 | 13.333 | 19.144 | 28.063 | 18.087 |
+------------------+--------+---------+---------+--------+----------+
| cup | 27.028 | 29.941 | 23.655 | 27.808 | 25.159 |
+------------------+--------+---------+---------+--------+----------+
| fork | 6.886 | 3.268 | 5.459 | 6.865 | 4.984 |
+------------------+--------+---------+---------+--------+----------+
| knife | 7.747 | 16.984 | 6.969 | 7.779 | 10.927 |
+------------------+--------+---------+---------+--------+----------+
| spoon | 5.010 | 3.255 | 3.959 | 5.035 | 1.169 |
+------------------+--------+---------+---------+--------+----------+
| bowl | 16.229 | 18.280 | 10.894 | 16.843 | 14.107 |
+------------------+--------+---------+---------+--------+----------+
| banana | 72.764 | 60.367 | 72.391 | 73.228 | 68.343 |
+------------------+--------+---------+---------+--------+----------+
| apple | 49.174 | 44.533 | 47.211 | 50.245 | 49.626 |
+------------------+--------+---------+---------+--------+----------+
| sandwich | 51.339 | 43.492 | 52.895 | 51.605 | 37.333 |
+------------------+--------+---------+---------+--------+----------+
| orange | 73.223 | 69.297 | 71.909 | 73.268 | 66.630 |
+------------------+--------+---------+---------+--------+----------+
| broccoli | 60.846 | 60.328 | 57.454 | 61.221 | 52.290 |
+------------------+--------+---------+---------+--------+----------+
| carrot | 49.940 | 45.861 | 46.288 | 50.189 | 41.886 |
+------------------+--------+---------+---------+--------+----------+
| hot dog | 61.027 | 43.633 | 66.585 | 60.752 | 60.753 |
+------------------+--------+---------+---------+--------+----------+
| pizza | 72.512 | 56.513 | 72.310 | 73.547 | 64.023 |
+------------------+--------+---------+---------+--------+----------+
| donut | 67.121 | 60.401 | 67.071 | 67.457 | 57.343 |
+------------------+--------+---------+---------+--------+----------+
| cake | 52.415 | 38.618 | 51.674 | 52.351 | 35.264 |
+------------------+--------+---------+---------+--------+----------+
| chair | 30.814 | 30.861 | 24.111 | 30.879 | 24.318 |
+------------------+--------+---------+---------+--------+----------+
| couch | 47.405 | 44.190 | 46.431 | 47.966 | 39.445 |
+------------------+--------+---------+---------+--------+----------+
| potted plant | 33.456 | 25.123 | 27.609 | 33.385 | 23.896 |
+------------------+--------+---------+---------+--------+----------+
| bed | 54.623 | 44.374 | 52.083 | 55.171 | 51.245 |
+------------------+--------+---------+---------+--------+----------+
| dining table | 25.111 | 35.317 | 21.749 | 25.805 | 20.091 |
+------------------+--------+---------+---------+--------+----------+
| toilet | 63.918 | 53.030 | 63.210 | 63.926 | 60.810 |
+------------------+--------+---------+---------+--------+----------+
| tv | 50.296 | 44.767 | 46.017 | 50.570 | 43.312 |
+------------------+--------+---------+---------+--------+----------+
| laptop | 38.510 | 38.057 | 32.630 | 38.876 | 36.115 |
+------------------+--------+---------+---------+--------+----------+
| mouse | 17.077 | 8.068 | 15.757 | 17.100 | 18.839 |
+------------------+--------+---------+---------+--------+----------+
| remote | 29.523 | 14.156 | 33.072 | 29.767 | 46.671 |
+------------------+--------+---------+---------+--------+----------+
| keyboard | 38.591 | 36.218 | 33.299 | 39.185 | 37.912 |
+------------------+--------+---------+---------+--------+----------+
| cell phone | 29.288 | 16.099 | 31.117 | 29.336 | 56.333 |
+------------------+--------+---------+---------+--------+----------+
| microwave | 28.599 | 23.323 | 23.758 | 28.313 | 39.481 |
+------------------+--------+---------+---------+--------+----------+
| oven | 38.260 | 33.288 | 37.474 | 38.976 | 33.479 |
+------------------+--------+---------+---------+--------+----------+
| toaster | 7.053 | 0 | 2.246 | 6.846 | 0 |
+------------------+--------+---------+---------+--------+----------+
| sink | 36.380 | 28.877 | 36.941 | 36.330 | 29.745 |
+------------------+--------+---------+---------+--------+----------+
| refrigerator | 47.999 | 48.048 | 44.405 | 48.795 | 45.899 |
+------------------+--------+---------+---------+--------+----------+
| book | 30.962 | 31.294 | 22.722 | 31.916 | 21.964 |
+------------------+--------+---------+---------+--------+----------+
| clock | 49.663 | 41.476 | 51.804 | 49.838 | 54.479 |
+------------------+--------+---------+---------+--------+----------+
| vase | 36.697 | 28.039 | 37.175 | 36.761 | 34.383 |
+------------------+--------+---------+---------+--------+----------+
| scissors | 32.757 | 38.121 | 33.609 | 32.303 | 48.112 |
+------------------+--------+---------+---------+--------+----------+
| teddy bear | 70.326 | 70.779 | 68.081 | 70.413 | 66.179 |
+------------------+--------+---------+---------+--------+----------+
| hair drier | 13.154 | 8.440 | 15.525 | 13.058 | 0 |
+------------------+--------+---------+---------+--------+----------+
| toothbrush | 22.605 | 13.267 | 28.927 | 22.470 | 28.756 |
+------------------+--------+---------+---------+--------+----------+
| m-Precision | 53.893 | 50.434 | 56.472 | 53.383 | 55.625 |
+------------------+--------+---------+---------+--------+----------+
| m-Recall | 66.726 | 66.188 | 57.215 | 67.846 | 56.047 |
+------------------+--------+---------+---------+--------+----------+
| m-ConfutionRatio | 3.187 | inf | 4.178 | 3.240 | inf |
+------------------+--------+---------+---------+--------+----------+
| m-IoU | 40.895 | 36.776 | 39.219 | 41.121 | 39.311 |
+------------------+--------+---------+---------+--------+----------+
2024-04-09 05:00:02,909 - train_coco_unicam_resume.py - INFO: Saving_30000_cpt...
2024-04-09 05:05:14,476 - train_coco_unicam_resume.py - INFO: Iter: 30200; Elasped: 10:03:49; ETA: 16:35:41; LR: 3.916e-05; cls_loss: 0.0400, cls_loss_aux: 0.0434, ptc_loss: 0.0894, aff_loss: 1.4649, kl_loss: 0.0267, seg_loss: 0.3528...
2024-04-09 05:10:08,351 - train_coco_unicam_resume.py - INFO: Iter: 30400; Elasped: 10:08:43; ETA: 16:33:10; LR: 3.902e-05; cls_loss: 0.0413, cls_loss_aux: 0.0444, ptc_loss: 0.0793, aff_loss: 1.4638, kl_loss: 0.0247, seg_loss: 0.3260...
2024-04-09 05:15:03,508 - train_coco_unicam_resume.py - INFO: Iter: 30600; Elasped: 10:13:38; ETA: 16:30:38; LR: 3.888e-05; cls_loss: 0.0418, cls_loss_aux: 0.0458, ptc_loss: 0.0876, aff_loss: 1.4643, kl_loss: 0.0257, seg_loss: 0.3771...
2024-04-09 05:19:55,611 - train_coco_unicam_resume.py - INFO: Iter: 30800; Elasped: 10:18:30; ETA: 16:27:59; LR: 3.874e-05; cls_loss: 0.0445, cls_loss_aux: 0.0482, ptc_loss: 0.0842, aff_loss: 1.4637, kl_loss: 0.0244, seg_loss: 0.3392...
2024-04-09 05:24:47,295 - train_coco_unicam_resume.py - INFO: Iter: 31000; Elasped: 10:23:22; ETA: 16:25:19; LR: 3.860e-05; cls_loss: 0.0471, cls_loss_aux: 0.0538, ptc_loss: 0.0876, aff_loss: 1.4634, kl_loss: 0.0256, seg_loss: 0.3308...
2024-04-09 05:24:47,310 - train_coco_unicam_resume.py - INFO: Saving_31000_cpt...
2024-04-09 05:29:54,768 - train_coco_unicam_resume.py - INFO: Iter: 31200; Elasped: 10:28:29; ETA: 16:23:00; LR: 3.846e-05; cls_loss: 0.0419, cls_loss_aux: 0.0455, ptc_loss: 0.0841, aff_loss: 1.4700, kl_loss: 0.0229, seg_loss: 0.3006...
2024-04-09 05:34:48,919 - train_coco_unicam_resume.py - INFO: Iter: 31400; Elasped: 10:33:23; ETA: 16:20:19; LR: 3.831e-05; cls_loss: 0.0463, cls_loss_aux: 0.0522, ptc_loss: 0.0861, aff_loss: 1.4624, kl_loss: 0.0247, seg_loss: 0.3690...
2024-04-09 05:39:40,671 - train_coco_unicam_resume.py - INFO: Iter: 31600; Elasped: 10:38:15; ETA: 16:17:34; LR: 3.817e-05; cls_loss: 0.0425, cls_loss_aux: 0.0477, ptc_loss: 0.0930, aff_loss: 1.4615, kl_loss: 0.0231, seg_loss: 0.3624...
2024-04-09 05:44:30,300 - train_coco_unicam_resume.py - INFO: Iter: 31800; Elasped: 10:43:05; ETA: 16:14:44; LR: 3.803e-05; cls_loss: 0.0446, cls_loss_aux: 0.0482, ptc_loss: 0.0893, aff_loss: 1.4622, kl_loss: 0.0246, seg_loss: 0.4003...
2024-04-09 05:49:19,907 - train_coco_unicam_resume.py - INFO: Iter: 32000; Elasped: 10:47:54; ETA: 16:11:51; LR: 3.789e-05; cls_loss: 0.0459, cls_loss_aux: 0.0495, ptc_loss: 0.0812, aff_loss: 1.4599, kl_loss: 0.0243, seg_loss: 0.3679...
2024-04-09 05:49:19,928 - train_coco_unicam_resume.py - INFO: Saving_32000_cpt...
2024-04-09 05:54:27,567 - train_coco_unicam_resume.py - INFO: Iter: 32200; Elasped: 10:53:02; ETA: 16:09:24; LR: 3.775e-05; cls_loss: 0.0441, cls_loss_aux: 0.0479, ptc_loss: 0.0946, aff_loss: 1.4622, kl_loss: 0.0244, seg_loss: 0.3863...
2024-04-09 05:59:15,670 - train_coco_unicam_resume.py - INFO: Iter: 32400; Elasped: 10:57:50; ETA: 16:06:26; LR: 3.760e-05; cls_loss: 0.0461, cls_loss_aux: 0.0505, ptc_loss: 0.1039, aff_loss: 1.4599, kl_loss: 0.0269, seg_loss: 0.3719...
2024-04-09 06:04:03,388 - train_coco_unicam_resume.py - INFO: Iter: 32600; Elasped: 11:02:38; ETA: 16:03:27; LR: 3.746e-05; cls_loss: 0.0445, cls_loss_aux: 0.0495, ptc_loss: 0.0860, aff_loss: 1.4585, kl_loss: 0.0230, seg_loss: 0.3853...
2024-04-09 06:08:51,673 - train_coco_unicam_resume.py - INFO: Iter: 32800; Elasped: 11:07:26; ETA: 16:00:27; LR: 3.732e-05; cls_loss: 0.0493, cls_loss_aux: 0.0535, ptc_loss: 0.0861, aff_loss: 1.4603, kl_loss: 0.0237, seg_loss: 0.3570...
2024-04-09 06:13:39,500 - train_coco_unicam_resume.py - INFO: Iter: 33000; Elasped: 11:12:14; ETA: 15:57:25; LR: 3.718e-05; cls_loss: 0.0436, cls_loss_aux: 0.0477, ptc_loss: 0.0929, aff_loss: 1.4591, kl_loss: 0.0249, seg_loss: 0.3951...
2024-04-09 06:13:39,517 - train_coco_unicam_resume.py - INFO: Saving_33000_cpt...
2024-04-09 06:18:32,632 - train_coco_unicam_resume.py - INFO: Iter: 33200; Elasped: 11:17:07; ETA: 15:54:29; LR: 3.703e-05; cls_loss: 0.0470, cls_loss_aux: 0.0541, ptc_loss: 0.0900, aff_loss: 1.4813, kl_loss: 0.0240, seg_loss: 0.3781...
2024-04-09 06:23:20,746 - train_coco_unicam_resume.py - INFO: Iter: 33400; Elasped: 11:21:55; ETA: 15:51:25; LR: 3.689e-05; cls_loss: 0.0466, cls_loss_aux: 0.0513, ptc_loss: 0.0905, aff_loss: 1.4585, kl_loss: 0.0242, seg_loss: 0.3310...
2024-04-09 06:28:07,918 - train_coco_unicam_resume.py - INFO: Iter: 33600; Elasped: 11:26:42; ETA: 15:48:18; LR: 3.675e-05; cls_loss: 0.0414, cls_loss_aux: 0.0455, ptc_loss: 0.0890, aff_loss: 1.4556, kl_loss: 0.0231, seg_loss: 0.3096...
2024-04-09 06:32:59,055 - train_coco_unicam_resume.py - INFO: Iter: 33800; Elasped: 11:31:33; ETA: 15:45:15; LR: 3.661e-05; cls_loss: 0.0447, cls_loss_aux: 0.0493, ptc_loss: 0.0816, aff_loss: 1.4566, kl_loss: 0.0251, seg_loss: 0.3320...
2024-04-09 06:37:59,033 - train_coco_unicam_resume.py - INFO: Iter: 34000; Elasped: 11:36:33; ETA: 15:42:23; LR: 3.646e-05; cls_loss: 0.0488, cls_loss_aux: 0.0536, ptc_loss: 0.0920, aff_loss: 1.4554, kl_loss: 0.0249, seg_loss: 0.4295...
2024-04-09 06:37:59,058 - train_coco_unicam_resume.py - INFO: Saving_34000_cpt...
2024-04-09 06:44:04,268 - train_coco_unicam_resume.py - INFO: Iter: 34200; Elasped: 11:42:39; ETA: 15:40:58; LR: 3.632e-05; cls_loss: 0.0434, cls_loss_aux: 0.0485, ptc_loss: 0.0818, aff_loss: 1.4548, kl_loss: 0.0232, seg_loss: 0.3195...
2024-04-09 06:49:19,185 - train_coco_unicam_resume.py - INFO: Iter: 34400; Elasped: 11:47:54; ETA: 15:38:22; LR: 3.618e-05; cls_loss: 0.0395, cls_loss_aux: 0.0431, ptc_loss: 0.0951, aff_loss: 1.4568, kl_loss: 0.0249, seg_loss: 0.3165...
2024-04-09 06:54:11,203 - train_coco_unicam_resume.py - INFO: Iter: 34600; Elasped: 11:52:46; ETA: 15:35:14; LR: 3.604e-05; cls_loss: 0.0403, cls_loss_aux: 0.0449, ptc_loss: 0.0931, aff_loss: 1.4571, kl_loss: 0.0224, seg_loss: 0.3072...
2024-04-09 06:59:11,822 - train_coco_unicam_resume.py - INFO: Iter: 34800; Elasped: 11:57:46; ETA: 15:32:16; LR: 3.589e-05; cls_loss: 0.0406, cls_loss_aux: 0.0459, ptc_loss: 0.0766, aff_loss: 1.4549, kl_loss: 0.0230, seg_loss: 0.3327...
2024-04-09 07:04:15,714 - train_coco_unicam_resume.py - INFO: Iter: 35000; Elasped: 12:02:50; ETA: 15:29:21; LR: 3.575e-05; cls_loss: 0.0424, cls_loss_aux: 0.0473, ptc_loss: 0.0893, aff_loss: 1.4526, kl_loss: 0.0237, seg_loss: 0.3912...
2024-04-09 07:04:15,741 - train_coco_unicam_resume.py - INFO: Saving_35000_cpt...
2024-04-09 07:10:06,619 - train_coco_unicam_resume.py - INFO: Iter: 35200; Elasped: 12:08:41; ETA: 15:27:24; LR: 3.561e-05; cls_loss: 0.0418, cls_loss_aux: 0.0465, ptc_loss: 0.0920, aff_loss: 1.4546, kl_loss: 0.0232, seg_loss: 0.3522...
2024-04-09 07:15:16,219 - train_coco_unicam_resume.py - INFO: Iter: 35400; Elasped: 12:13:51; ETA: 15:24:34; LR: 3.546e-05; cls_loss: 0.0404, cls_loss_aux: 0.0453, ptc_loss: 0.0816, aff_loss: 1.4552, kl_loss: 0.0226, seg_loss: 0.2545...
2024-04-09 07:20:24,644 - train_coco_unicam_resume.py - INFO: Iter: 35600; Elasped: 12:18:59; ETA: 15:21:39; LR: 3.532e-05; cls_loss: 0.0417, cls_loss_aux: 0.0472, ptc_loss: 0.0840, aff_loss: 1.4535, kl_loss: 0.0221, seg_loss: 0.3316...
2024-04-09 07:25:22,094 - train_coco_unicam_resume.py - INFO: Iter: 35800; Elasped: 12:23:57; ETA: 15:18:30; LR: 3.518e-05; cls_loss: 0.0457, cls_loss_aux: 0.0503, ptc_loss: 0.0792, aff_loss: 1.4515, kl_loss: 0.0235, seg_loss: 0.3481...
2024-04-09 07:30:29,196 - train_coco_unicam_resume.py - INFO: Iter: 36000; Elasped: 12:29:03; ETA: 15:15:30; LR: 3.503e-05; cls_loss: 0.0456, cls_loss_aux: 0.0514, ptc_loss: 0.0914, aff_loss: 1.4592, kl_loss: 0.0248, seg_loss: 0.3499...
2024-04-09 07:30:29,196 - train_coco_unicam_resume.py - INFO: Saving_36000_cpt...
2024-04-09 07:35:37,861 - train_coco_unicam_resume.py - INFO: Iter: 36200; Elasped: 12:34:12; ETA: 15:12:32; LR: 3.489e-05; cls_loss: 0.0429, cls_loss_aux: 0.0469, ptc_loss: 0.0813, aff_loss: 1.4521, kl_loss: 0.0235, seg_loss: 0.3314...
2024-04-09 07:40:54,133 - train_coco_unicam_resume.py - INFO: Iter: 36400; Elasped: 12:39:29; ETA: 15:09:42; LR: 3.475e-05; cls_loss: 0.0452, cls_loss_aux: 0.0492, ptc_loss: 0.0827, aff_loss: 1.4515, kl_loss: 0.0227, seg_loss: 0.3440...
2024-04-09 07:46:02,940 - train_coco_unicam_resume.py - INFO: Iter: 36600; Elasped: 12:44:37; ETA: 15:06:40; LR: 3.460e-05; cls_loss: 0.0431, cls_loss_aux: 0.0481, ptc_loss: 0.0814, aff_loss: 1.4538, kl_loss: 0.0231, seg_loss: 0.3532...
2024-04-09 07:51:07,641 - train_coco_unicam_resume.py - INFO: Iter: 36800; Elasped: 12:49:42; ETA: 15:03:33; LR: 3.446e-05; cls_loss: 0.0435, cls_loss_aux: 0.0479, ptc_loss: 0.0787, aff_loss: 1.4488, kl_loss: 0.0235, seg_loss: 0.3495...
2024-04-09 07:56:25,986 - train_coco_unicam_resume.py - INFO: Iter: 37000; Elasped: 12:55:00; ETA: 15:00:40; LR: 3.432e-05; cls_loss: 0.0443, cls_loss_aux: 0.0495, ptc_loss: 0.0790, aff_loss: 1.4528, kl_loss: 0.0228, seg_loss: 0.3423...
2024-04-09 07:56:26,019 - train_coco_unicam_resume.py - INFO: Saving_37000_cpt...
2024-04-09 08:01:50,514 - train_coco_unicam_resume.py - INFO: Iter: 37200; Elasped: 13:00:25; ETA: 14:57:53; LR: 3.417e-05; cls_loss: 0.0410, cls_loss_aux: 0.0461, ptc_loss: 0.0847, aff_loss: 1.4514, kl_loss: 0.0232, seg_loss: 0.3491...
2024-04-09 08:07:05,984 - train_coco_unicam_resume.py - INFO: Iter: 37400; Elasped: 13:05:40; ETA: 14:54:54; LR: 3.403e-05; cls_loss: 0.0391, cls_loss_aux: 0.0431, ptc_loss: 0.0813, aff_loss: 1.4506, kl_loss: 0.0226, seg_loss: 0.3095...
2024-04-09 08:12:26,915 - train_coco_unicam_resume.py - INFO: Iter: 37600; Elasped: 13:11:01; ETA: 14:51:59; LR: 3.389e-05; cls_loss: 0.0448, cls_loss_aux: 0.0490, ptc_loss: 0.0806, aff_loss: 1.4501, kl_loss: 0.0222, seg_loss: 0.3203...
2024-04-09 08:17:46,127 - train_coco_unicam_resume.py - INFO: Iter: 37800; Elasped: 13:16:21; ETA: 14:49:02; LR: 3.374e-05; cls_loss: 0.0447, cls_loss_aux: 0.0494, ptc_loss: 0.0844, aff_loss: 1.4504, kl_loss: 0.0243, seg_loss: 0.3891...
2024-04-09 08:22:59,767 - train_coco_unicam_resume.py - INFO: Iter: 38000; Elasped: 13:21:34; ETA: 14:45:56; LR: 3.360e-05; cls_loss: 0.0459, cls_loss_aux: 0.0513, ptc_loss: 0.0771, aff_loss: 1.4480, kl_loss: 0.0249, seg_loss: 0.3602...
2024-04-09 08:22:59,806 - train_coco_unicam_resume.py - INFO: Saving_38000_cpt...
2024-04-09 08:28:14,234 - train_coco_unicam_resume.py - INFO: Iter: 38200; Elasped: 13:26:49; ETA: 14:42:51; LR: 3.345e-05; cls_loss: 0.0408, cls_loss_aux: 0.0462, ptc_loss: 0.0767, aff_loss: 1.4459, kl_loss: 0.0244, seg_loss: 0.3152...
2024-04-09 08:33:32,856 - train_coco_unicam_resume.py - INFO: Iter: 38400; Elasped: 13:32:07; ETA: 14:39:47; LR: 3.331e-05; cls_loss: 0.0394, cls_loss_aux: 0.0432, ptc_loss: 0.0733, aff_loss: 1.4465, kl_loss: 0.0223, seg_loss: 0.3233...
2024-04-09 08:38:43,297 - train_coco_unicam_resume.py - INFO: Iter: 38600; Elasped: 13:37:18; ETA: 14:36:35; LR: 3.317e-05; cls_loss: 0.0390, cls_loss_aux: 0.0430, ptc_loss: 0.0852, aff_loss: 1.4464, kl_loss: 0.0244, seg_loss: 0.3660...
2024-04-09 08:44:10,379 - train_coco_unicam_resume.py - INFO: Iter: 38800; Elasped: 13:42:45; ETA: 14:33:38; LR: 3.302e-05; cls_loss: 0.0443, cls_loss_aux: 0.0499, ptc_loss: 0.0721, aff_loss: 1.4492, kl_loss: 0.0236, seg_loss: 0.3404...
2024-04-09 08:49:29,346 - train_coco_unicam_resume.py - INFO: Iter: 39000; Elasped: 13:48:04; ETA: 14:30:31; LR: 3.288e-05; cls_loss: 0.0441, cls_loss_aux: 0.0488, ptc_loss: 0.0921, aff_loss: 1.4466, kl_loss: 0.0259, seg_loss: 0.3539...
2024-04-09 08:49:29,418 - train_coco_unicam_resume.py - INFO: Saving_39000_cpt...
2024-04-09 08:54:49,365 - train_coco_unicam_resume.py - INFO: Iter: 39200; Elasped: 13:53:24; ETA: 14:27:24; LR: 3.273e-05; cls_loss: 0.0485, cls_loss_aux: 0.0520, ptc_loss: 0.0861, aff_loss: 1.4440, kl_loss: 0.0240, seg_loss: 0.3460...
2024-04-09 09:00:01,495 - train_coco_unicam_resume.py - INFO: Iter: 39400; Elasped: 13:58:36; ETA: 14:24:08; LR: 3.259e-05; cls_loss: 0.0428, cls_loss_aux: 0.0487, ptc_loss: 0.0856, aff_loss: 1.4462, kl_loss: 0.0244, seg_loss: 0.3903...
2024-04-09 09:05:15,481 - train_coco_unicam_resume.py - INFO: Iter: 39600; Elasped: 14:03:50; ETA: 14:20:52; LR: 3.244e-05; cls_loss: 0.0420, cls_loss_aux: 0.0463, ptc_loss: 0.0826, aff_loss: 1.4478, kl_loss: 0.0219, seg_loss: 0.3105...
2024-04-09 09:10:44,600 - train_coco_unicam_resume.py - INFO: Iter: 39800; Elasped: 14:09:19; ETA: 14:17:51; LR: 3.230e-05; cls_loss: 0.0427, cls_loss_aux: 0.0476, ptc_loss: 0.0856, aff_loss: 1.4488, kl_loss: 0.0238, seg_loss: 0.3408...
2024-04-09 09:15:31,717 - train_coco_unicam_resume.py - INFO: Iter: 40000; Elasped: 14:14:06; ETA: 14:14:06; LR: 3.215e-05; cls_loss: 0.0364, cls_loss_aux: 0.0388, ptc_loss: 0.0812, aff_loss: 1.4450, kl_loss: 0.0235, seg_loss: 0.3120...
2024-04-09 09:15:31,734 - train_coco_unicam_resume.py - INFO: Validating...
2024-04-09 09:46:53,164 - train_coco_unicam_resume.py - INFO: val cls score: 0.818579
2024-04-09 09:46:53,179 - train_coco_unicam_resume.py - INFO:
+------------------+--------+---------+---------+--------+----------+
| Class | CAM | aux_CAM | aff_Map | dr_Map | Seg_Pred |
+==================+========+=========+=========+========+==========+
| _background_ | 73.302 | 69.705 | 74.050 | 73.058 | 73.014 |
+------------------+--------+---------+---------+--------+----------+
| person | 35.631 | 34.303 | 34.826 | 35.505 | 35.199 |
+------------------+--------+---------+---------+--------+----------+
| bicycle | 37.423 | 43.298 | 28.145 | 37.820 | 33.394 |
+------------------+--------+---------+---------+--------+----------+
| car | 47.388 | 41.980 | 41.563 | 47.422 | 42.666 |
+------------------+--------+---------+---------+--------+----------+
| motorcycle | 55.190 | 53.705 | 51.522 | 55.393 | 56.808 |
+------------------+--------+---------+---------+--------+----------+
| airplane | 68.992 | 68.103 | 64.045 | 69.052 | 71.256 |
+------------------+--------+---------+---------+--------+----------+
| bus | 46.487 | 48.502 | 42.564 | 47.230 | 47.526 |
+------------------+--------+---------+---------+--------+----------+
| train | 49.755 | 42.497 | 46.098 | 50.316 | 49.359 |
+------------------+--------+---------+---------+--------+----------+
| truck | 42.090 | 43.287 | 39.549 | 42.543 | 35.857 |
+------------------+--------+---------+---------+--------+----------+
| boat | 45.707 | 43.762 | 36.671 | 45.907 | 48.645 |
+------------------+--------+---------+---------+--------+----------+
| traffic light | 25.453 | 26.384 | 25.454 | 25.448 | 44.413 |
+------------------+--------+---------+---------+--------+----------+
| fire hydrant | 61.035 | 69.979 | 61.200 | 60.863 | 70.494 |
+------------------+--------+---------+---------+--------+----------+
| stop sign | 61.062 | 69.370 | 70.063 | 60.773 | 73.760 |
+------------------+--------+---------+---------+--------+----------+
| parking meter | 63.531 | 60.908 | 64.436 | 63.095 | 65.780 |
+------------------+--------+---------+---------+--------+----------+
| bench | 39.688 | 41.277 | 32.229 | 40.079 | 37.349 |
+------------------+--------+---------+---------+--------+----------+
| bird | 50.042 | 57.070 | 49.157 | 49.905 | 56.292 |
+------------------+--------+---------+---------+--------+----------+
| cat | 60.323 | 56.176 | 55.043 | 61.532 | 58.369 |
+------------------+--------+---------+---------+--------+----------+
| dog | 66.803 | 47.017 | 59.448 | 68.494 | 56.906 |
+------------------+--------+---------+---------+--------+----------+
| horse | 57.239 | 58.137 | 48.955 | 57.527 | 55.188 |
+------------------+--------+---------+---------+--------+----------+
| sheep | 73.092 | 66.497 | 66.616 | 73.188 | 71.260 |
+------------------+--------+---------+---------+--------+----------+
| cow | 67.362 | 62.730 | 57.466 | 68.091 | 63.306 |
+------------------+--------+---------+---------+--------+----------+
| elephant | 69.129 | 68.910 | 64.354 | 69.883 | 70.336 |
+------------------+--------+---------+---------+--------+----------+
| bear | 73.650 | 64.475 | 71.238 | 74.594 | 76.548 |
+------------------+--------+---------+---------+--------+----------+
| zebra | 79.268 | 78.897 | 74.303 | 79.245 | 77.575 |
+------------------+--------+---------+---------+--------+----------+
| giraffe | 72.121 | 71.971 | 56.369 | 72.094 | 65.521 |
+------------------+--------+---------+---------+--------+----------+
| backpack | 20.968 | 20.618 | 20.942 | 21.042 | 19.171 |
+------------------+--------+---------+---------+--------+----------+
| umbrella | 58.330 | 64.931 | 56.908 | 58.968 | 68.585 |
+------------------+--------+---------+---------+--------+----------+
| handbag | 10.976 | 14.227 | 6.089 | 11.063 | 3.747 |
+------------------+--------+---------+---------+--------+----------+
| tie | 18.173 | 34.190 | 9.397 | 17.985 | 28.813 |
+------------------+--------+---------+---------+--------+----------+
| suitcase | 51.294 | 52.160 | 45.421 | 52.228 | 50.851 |
+------------------+--------+---------+---------+--------+----------+
| frisbee | 40.646 | 22.209 | 45.115 | 41.358 | 39.732 |
+------------------+--------+---------+---------+--------+----------+
| skis | 5.785 | 9.347 | 5.028 | 5.663 | 5.664 |
+------------------+--------+---------+---------+--------+----------+
| snowboard | 12.283 | 11.337 | 8.071 | 12.167 | 19.324 |
+------------------+--------+---------+---------+--------+----------+
| sports ball | 5.247 | 8.818 | 2.597 | 5.160 | 21.880 |
+------------------+--------+---------+---------+--------+----------+
| kite | 38.146 | 30.861 | 36.666 | 38.069 | 34.330 |
+------------------+--------+---------+---------+--------+----------+
| baseball bat | 3.455 | 1.762 | 0.805 | 3.401 | 2.370 |
+------------------+--------+---------+---------+--------+----------+
| baseball glove | 14.176 | 10.909 | 16.627 | 13.868 | 11.551 |
+------------------+--------+---------+---------+--------+----------+
| skateboard | 15.154 | 21.281 | 8.542 | 15.116 | 13.815 |
+------------------+--------+---------+---------+--------+----------+
| surfboard | 9.457 | 11.671 | 9.661 | 9.286 | 9.346 |
+------------------+--------+---------+---------+--------+----------+
| tennis racket | 6.549 | 4.120 | 3.453 | 6.500 | 2.970 |
+------------------+--------+---------+---------+--------+----------+
| bottle | 27.035 | 24.937 | 16.777 | 26.904 | 21.716 |
+------------------+--------+---------+---------+--------+----------+
| wine glass | 24.321 | 20.836 | 11.682 | 24.407 | 19.664 |
+------------------+--------+---------+---------+--------+----------+
| cup | 30.955 | 35.478 | 25.995 | 31.247 | 28.621 |
+------------------+--------+---------+---------+--------+----------+
| fork | 8.137 | 3.321 | 5.689 | 7.953 | 10.183 |
+------------------+--------+---------+---------+--------+----------+
| knife | 8.058 | 8.657 | 5.328 | 8.082 | 17.080 |
+------------------+--------+---------+---------+--------+----------+
| spoon | 7.178 | 8.015 | 4.533 | 6.947 | 2.537 |
+------------------+--------+---------+---------+--------+----------+
| bowl | 23.196 | 23.074 | 15.773 | 23.641 | 18.197 |
+------------------+--------+---------+---------+--------+----------+
| banana | 72.186 | 72.367 | 69.046 | 72.405 | 72.125 |
+------------------+--------+---------+---------+--------+----------+
| apple | 59.318 | 37.340 | 56.445 | 59.566 | 55.771 |
+------------------+--------+---------+---------+--------+----------+
| sandwich | 53.455 | 45.426 | 54.171 | 54.159 | 41.187 |
+------------------+--------+---------+---------+--------+----------+
| orange | 72.499 | 74.556 | 68.947 | 72.759 | 68.862 |
+------------------+--------+---------+---------+--------+----------+
| broccoli | 62.892 | 62.199 | 55.538 | 62.895 | 59.234 |
+------------------+--------+---------+---------+--------+----------+
| carrot | 54.342 | 50.702 | 43.763 | 53.674 | 45.940 |
+------------------+--------+---------+---------+--------+----------+
| hot dog | 58.981 | 48.653 | 61.076 | 58.500 | 58.712 |
+------------------+--------+---------+---------+--------+----------+
| pizza | 61.241 | 42.450 | 57.212 | 63.127 | 54.804 |
+------------------+--------+---------+---------+--------+----------+
| donut | 73.002 | 57.241 | 75.608 | 73.158 | 63.076 |
+------------------+--------+---------+---------+--------+----------+
| cake | 55.956 | 49.710 | 57.977 | 56.321 | 44.528 |
+------------------+--------+---------+---------+--------+----------+
| chair | 31.656 | 26.852 | 24.474 | 31.585 | 26.346 |
+------------------+--------+---------+---------+--------+----------+
| couch | 52.001 | 51.348 | 49.204 | 52.004 | 43.291 |
+------------------+--------+---------+---------+--------+----------+
| potted plant | 37.415 | 29.342 | 23.957 | 37.242 | 23.962 |
+------------------+--------+---------+---------+--------+----------+
| bed | 53.872 | 43.047 | 51.492 | 54.560 | 51.199 |
+------------------+--------+---------+---------+--------+----------+
| dining table | 40.372 | 36.825 | 38.252 | 41.197 | 32.511 |
+------------------+--------+---------+---------+--------+----------+
| toilet | 67.172 | 60.554 | 63.498 | 67.360 | 63.699 |
+------------------+--------+---------+---------+--------+----------+
| tv | 49.644 | 46.947 | 40.242 | 50.254 | 45.563 |
+------------------+--------+---------+---------+--------+----------+
| laptop | 42.205 | 40.950 | 34.159 | 42.556 | 40.889 |
+------------------+--------+---------+---------+--------+----------+
| mouse | 15.409 | 15.293 | 13.948 | 15.429 | 12.557 |
+------------------+--------+---------+---------+--------+----------+
| remote | 34.269 | 46.145 | 33.445 | 34.363 | 53.851 |
+------------------+--------+---------+---------+--------+----------+
| keyboard | 40.602 | 28.022 | 35.151 | 40.774 | 40.757 |
+------------------+--------+---------+---------+--------+----------+
| cell phone | 32.014 | 28.602 | 34.111 | 32.106 | 55.879 |
+------------------+--------+---------+---------+--------+----------+
| microwave | 37.093 | 50.488 | 33.591 | 37.321 | 48.083 |
+------------------+--------+---------+---------+--------+----------+
| oven | 39.354 | 34.777 | 38.054 | 39.599 | 30.018 |
+------------------+--------+---------+---------+--------+----------+
| toaster | 16.143 | 4.109 | 12.677 | 16.002 | 0 |
+------------------+--------+---------+---------+--------+----------+
| sink | 35.585 | 25.998 | 32.700 | 35.560 | 26.449 |
+------------------+--------+---------+---------+--------+----------+
| refrigerator | 51.983 | 48.445 | 45.450 | 53.105 | 48.999 |
+------------------+--------+---------+---------+--------+----------+
| book | 33.406 | 28.124 | 24.980 | 34.524 | 26.737 |
+------------------+--------+---------+---------+--------+----------+
| clock | 52.676 | 55.955 | 45.677 | 52.949 | 61.221 |
+------------------+--------+---------+---------+--------+----------+
| vase | 41.004 | 30.869 | 41.557 | 41.286 | 43.258 |
+------------------+--------+---------+---------+--------+----------+
| scissors | 39.687 | 38.332 | 36.729 | 39.660 | 42.280 |
+------------------+--------+---------+---------+--------+----------+
| teddy bear | 63.745 | 63.433 | 58.309 | 64.754 | 59.085 |
+------------------+--------+---------+---------+--------+----------+
| hair drier | 12.181 | 6.026 | 7.424 | 11.979 | 0.437 |
+------------------+--------+---------+---------+--------+----------+
| toothbrush | 25.233 | 26.893 | 29.732 | 25.341 | 30.498 |
+------------------+--------+---------+---------+--------+----------+
| m-Precision | 55.590 | 55.568 | 59.298 | 55.145 | 59.751 |
+------------------+--------+---------+---------+--------+----------+
| m-Recall | 66.393 | 63.946 | 51.591 | 67.346 | 55.364 |
+------------------+--------+---------+---------+--------+----------+
| m-ConfutionRatio | 2.501 | 3.270 | 4.084 | 2.545 | inf |
+------------------+--------+---------+---------+--------+----------+
| m-IoU | 42.344 | 39.997 | 38.581 | 42.570 | 41.466 |
+------------------+--------+---------+---------+--------+----------+
2024-04-09 09:46:53,179 - train_coco_unicam_resume.py - INFO: Saving_40000_cpt...
2024-04-09 09:51:58,165 - train_coco_unicam_resume.py - INFO: Iter: 40200; Elasped: 14:50:33; ETA: 14:41:41; LR: 3.201e-05; cls_loss: 0.0404, cls_loss_aux: 0.0434, ptc_loss: 0.0781, aff_loss: 1.4451, kl_loss: 0.0241, seg_loss: 0.3175...
2024-04-09 09:56:56,997 - train_coco_unicam_resume.py - INFO: Iter: 40400; Elasped: 14:55:31; ETA: 14:37:47; LR: 3.186e-05; cls_loss: 0.0359, cls_loss_aux: 0.0380, ptc_loss: 0.0763, aff_loss: 1.4497, kl_loss: 0.0205, seg_loss: 0.2829...
2024-04-09 10:01:52,114 - train_coco_unicam_resume.py - INFO: Iter: 40600; Elasped: 15:00:26; ETA: 14:33:49; LR: 3.172e-05; cls_loss: 0.0399, cls_loss_aux: 0.0436, ptc_loss: 0.0862, aff_loss: 1.4470, kl_loss: 0.0243, seg_loss: 0.3782...
2024-04-09 10:07:07,656 - train_coco_unicam_resume.py - INFO: Iter: 40800; Elasped: 15:05:42; ETA: 14:30:10; LR: 3.157e-05; cls_loss: 0.0421, cls_loss_aux: 0.0477, ptc_loss: 0.0800, aff_loss: 1.4440, kl_loss: 0.0238, seg_loss: 0.2912...
2024-04-09 10:12:16,069 - train_coco_unicam_resume.py - INFO: Iter: 41000; Elasped: 15:10:50; ETA: 14:26:24; LR: 3.143e-05; cls_loss: 0.0446, cls_loss_aux: 0.0479, ptc_loss: 0.0805, aff_loss: 1.4455, kl_loss: 0.0239, seg_loss: 0.3503...
2024-04-09 10:12:16,100 - train_coco_unicam_resume.py - INFO: Saving_41000_cpt...