-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtweaks.py
298 lines (247 loc) · 10.6 KB
/
tweaks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import inspect
import pickle
import sys
import warnings
from functools import wraps
from itertools import chain
from multiprocessing import cpu_count
from pathlib import Path
from subprocess import run, DEVNULL
from typing import Callable, Dict, Collection, List, Hashable, Any
import joblib
import numpy as np
from loguru import logger
from tqdm import tqdm
# LOGGING format and configuration
def loguru_showwarning(message, category, filename, lineno, file=None, line=None):
filename = Path(filename).name
logger.warning(f"{filename} {category.__name__}: {message}")
logger.remove()
log_format = "<green>{time:YYYY-MM-DD HH:mm:ss}</green> <cyan>{function}</cyan>: <level>{message}</level>"
logger.add(sys.stderr, format=log_format)
warnings.showwarning = loguru_showwarning
# DEFAULTS
default_threads = max(cpu_count() - 1, 1)
seed_max = 2 ** 32 - 1
extensions = {'gbk': {'.gb', '.gbk'},
'gff': {'.gff', '.gff3'},
'fna': {'.fa', '.fas', '.fasta', '.fna'},
'faa': {'.fa', '.fas', '.fasta', '.faa'}}
for form in extensions: # add gzip compressed files
extensions[form].update([f'{e}.gz' for e in extensions[form]])
def frantic_search(dictionary: Dict[Hashable, Any],
*possible_keys: Hashable):
"""
Find first of several keys that is in a dictionary and return value
:param dictionary: dictionary to search
:param possible_keys: any number of possible keys (preferred first)
:return: dictionary[first_found_key]
"""
for key in possible_keys:
if key in dictionary:
return dictionary[key]
missed_keys = ', '.join([str(k) for k in possible_keys])
raise KeyError(f'Found none of the: {missed_keys}')
def find_files(directory: Path,
file_type: str,
descent: bool = False):
"""
Find files of a given type in a folder.
:param directory: directory to search in
:param file_type: file type to search for
:param descent: whether to search in subdirectories (and their subdirectories)
:return:
"""
main_file_catalogue = []
expected_extensions = extensions[file_type]
detected_files = [f for f in directory.iterdir() if f.suffix in expected_extensions]
subdirectories = [f for f in directory.iterdir() if f.is_dir()]
if detected_files:
main_file_catalogue.extend(detected_files)
elif subdirectories and descent:
for sd in subdirectories:
main_file_catalogue.extend(find_files(sd, file_type, descent))
return main_file_catalogue
# PARALLELIZATION
class Parallel(joblib.Parallel):
"""
The modification of joblib.Parallel
with a TQDM progress bar
according to Nth
(https://stackoverflow.com/questions/37804279/how-can-we-use-tqdm-in-a-parallel-execution-with-joblib)
"""
def __init__(self,
parallelized_function: Callable,
input_collection: Collection = None,
random_replicates: int = None,
kwargs: Dict = None,
n_jobs=None,
backend=None,
description: str = None,
verbose=0,
timeout=None,
pre_dispatch='2 * n_jobs',
batch_size='auto',
temp_folder=None, max_nbytes='1M', mmap_mode='r',
prefer=None,
require=None,
bar: bool = True):
if not n_jobs:
n_jobs = default_threads
joblib.Parallel.__init__(self,
n_jobs=n_jobs,
backend=backend,
verbose=verbose,
timeout=timeout,
pre_dispatch=pre_dispatch,
batch_size=batch_size,
temp_folder=temp_folder,
max_nbytes=max_nbytes,
mmap_mode=mmap_mode,
prefer=prefer,
require=require)
assert bool(random_replicates) ^ bool(input_collection), 'You need to specify EITHER an input collection ' \
'OR number of random replicates of the function'
kwargs = {} if not kwargs else kwargs
description = description if description else parallelized_function.__name__
if random_replicates:
input_collection = np.random.randint(0, 2 ** 32 - 1,
size=random_replicates,
dtype=np.int64)
description = f'{description} 🎲'
jobs = ((joblib.delayed(parallelized_function)(e, **kwargs)) for e in input_collection)
if bar:
self._progress = tqdm(total=len(input_collection), file=sys.stdout)
if description:
self._progress.set_description(description)
else:
self._progress = None
self.result = list(self.__call__(jobs))
if self._progress:
self._progress.close()
print(flush=True)
def print_progress(self):
if self._progress:
self._progress.n = self.n_completed_tasks
self._progress: tqdm
self._progress.refresh()
class BatchParallel(Parallel):
""" Version of the Parallel used for large numbers of
computationally un-intensive processes """
def __init__(self,
parallelized_function: Callable,
input_collection: Collection = None,
random_replicates: int = None,
chunk_size: float = 0.1 / default_threads,
kwargs: Dict = {},
n_jobs=None,
backend=None,
description: str = None,
verbose=0,
timeout=None,
pre_dispatch='2 * n_jobs',
batch_size='auto',
temp_folder=None, max_nbytes='1M', mmap_mode='r',
prefer=None,
require=None,
bar: bool = True):
assert bool(random_replicates) ^ bool(input_collection), 'You need to specify EITHER an input collection ' \
'OR number of random replicates of the function'
if description is None:
description = parallelized_function.__name__
if random_replicates:
input_collection = np.random.randint(0, 2 ** 32 - 1,
size=random_replicates,
dtype=np.int64)
description = f'{description} 🎲'
def wrapper_function(batch):
return tuple([parallelized_function(element, **kwargs) for element in batch])
chunk_n = int(len(input_collection) * chunk_size)
batches = [input_collection[i * chunk_n:(i + 1) * chunk_n] for i in
range((len(input_collection) + chunk_n - 1) // chunk_n)]
Parallel.__init__(self,
parallelized_function=wrapper_function,
input_collection=batches,
n_jobs=n_jobs,
backend=backend,
verbose=verbose,
timeout=timeout,
pre_dispatch=pre_dispatch,
batch_size=batch_size,
temp_folder=temp_folder,
max_nbytes=max_nbytes,
mmap_mode=mmap_mode,
prefer=prefer,
require=require,
description=description,
bar=bar)
self.result = chain.from_iterable(self.result)
def run_external(command: List[str],
stdout='suppress',
stdin=None):
"""
Run external (non-python) command
:param command: list of the expressions
that make up shell command e.g. ['ls', '-lh']
:param stdout: do not print the log messages
:param stdin: input for the command
"""
sanitized_command = [str(c) for c in command]
logger.info(" ".join(sanitized_command))
if stdout == 'suppress':
process = run(sanitized_command, stdout=DEVNULL, stderr=DEVNULL, input=stdin)
elif stdout == 'capture':
process = run(sanitized_command, capture_output=True, input=stdin)
return process.stdout
else:
process = run(sanitized_command)
if process.returncode or process.stderr:
raise ChildProcessError(f'"{" ".join(sanitized_command)}" crashed with:\n{process.stderr}')
def parse_fasta(fasta: Path):
"""
todo
:param fasta:
"""
identifier, sequence = None, []
with fasta.open() as fas:
for line in fas:
line = line.rstrip('\n')
if line.startswith('>'):
if identifier is not None:
yield identifier, ''.join(sequence)
identifier = line.lstrip('>').split(' ')[0]
sequence = []
else:
sequence.append(line)
yield identifier, ''.join(sequence)
def checkpoint(funct: callable):
"""
Simple serialization decorator
that saves function result
if exacted output file don't exist or is empty
or read it if it is non-empty
@param funct: function to wrap
@param pickle_path: a path to an output file
@param serialization_method: a module used for serialization (either joblib or pickle)
@return:
"""
signature = inspect.signature(funct)
@wraps(funct)
def save_checkpoint(*args, **kwargs):
bound_args = signature.bind(*args, **kwargs)
pickle_path = Path(bound_args.arguments.get('pickle_path',
signature.parameters['pickle_path'].default))
if pickle_path:
try:
with pickle_path.open('rb') as file_object:
result = pickle.load(file_object)
logger.info(f'\ntemporary file read from: {pickle_path.as_posix()}\n', flush=True)
return result
except (FileNotFoundError, IOError, EOFError):
sys.setrecursionlimit(5000)
result = funct(*args, **kwargs)
with pickle_path.open('wb') as out:
pickle.dump(result, out)
logger.info(f'\ntemporary file stored at: {pickle_path.as_posix()}\n', flush=True)
return result
return save_checkpoint