-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetrics.py
65 lines (58 loc) · 2.39 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from collections import defaultdict
import numpy as np
from scipy.stats import spearmanr
from six import iteritems
def bootstrap(metric, r_pred, r_true, user_ids, item_ids):
n = len(r_true)
values = []
for i in range(1000):
x = np.random.choice(n, size=n)
values.append(metric(r_pred[x], r_true[x], user_ids[x], item_ids[x]))
return values
def rmse(r_pred, r_true, user_ids, item_ids):
return np.mean((r_pred - r_true)**2)**0.5
def mae(r_pred, r_true, user_ids, item_ids):
return np.mean(np.abs(r_pred - r_true))
def spearman(r_pred, r_true, user_ids, item_ids):
return spearmanr(r_pred, r_true)[0]
def fcp(r_pred, r_true, user_ids, item_ids):
# https://github.com/NicolasHug/Surprise/blob/d29b255826506c95c4822fe633f1107354c3f6a5/surprise/accuracy.py
predictions = defaultdict(list)
for i in range(len(user_ids)):
predictions[int(user_ids[i])].append([r_true[i], r_pred[i]])
nc_u = defaultdict(int)
nd_u = defaultdict(int)
for u0, preds in iteritems(predictions):
if len(preds) == 1:
continue
for r0i, esti in preds:
for r0j, estj in preds:
if esti > estj and r0i > r0j:
nc_u[u0] += 1
if esti >= estj and r0i < r0j:
nd_u[u0] += 1
nc = np.mean(list(nc_u.values())) if nc_u else 0
nd = np.mean(list(nd_u.values())) if nd_u else 0
return nc / (nc + nd)
def bpr(r_pred, r_true, user_ids, item_ids):
# rescale predictions to range 1-5
r_min, r_range = r_true.min(), r_true.max() - r_true.min()
r_pred, r_true = (r_pred - r_min)/r_range*4 + 1, (r_true - r_min)/r_range*4 + 1
# group input/output pairs by user_id
groups = {}
for i, user_id in enumerate(user_ids):
if user_id in groups:
groups[user_id].append((r_pred[i], r_true[i]))
else:
groups[user_id] = [(r_pred[i], r_true[i])]
# compute bpr
total, count = 0, 0
for user_id, group in groups.items():
for i in range(1, len(group)):
for j in range(i):
r_pred_i, r_true_i = group[i]
r_pred_j, r_true_j = group[j]
x = r_pred_i - r_pred_j if r_true_i > r_true_j else r_pred_j - r_pred_i
total, count = total + np.log(1/(1 + np.exp(-x))), count + 1
# normalize bpr by count and express as probability
return np.exp(total/count)