Skip to content
This repository has been archived by the owner on Jun 2, 2022. It is now read-only.

Commit

Permalink
Submission
Browse files Browse the repository at this point in the history
- added README
- improved supplements
  • Loading branch information
Zacharias Steinmetz committed Dec 14, 2021
1 parent 57b7ba9 commit adc4dbf
Show file tree
Hide file tree
Showing 23 changed files with 455 additions and 91 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -284,6 +284,7 @@ TSWLatexianTemp*

## Own:
templates/
unused/
archive/
organizational/
publications/
feedback/
103 changes: 102 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1 +1,102 @@
# Agricultural Plastic Covers—Source of Plastic Debris in Soil?
# Agricultural Plastic Covers—Source of Plastic Debris in Soil?

Submitted dissertation thesis for the partial fulfillment of the requirements
for a Doctor of Natural Sciences

*By Zacharias Steinmetz*

## Summary

The use of agricultural plastic covers has become common practice for
its agronomic benefits such as improving yields and crop quality,
managing harvest times better, and increasing pesticide and water use
efficiency. However, plastic covers are suspected of partially breaking
down into smaller debris and thereby contributing to soil pollution with
microplastics. A better understanding of the sources and fate of plastic
debris in terrestrial systems has so far been hindered by the lack of
adequate analytical techniques for the mass-based and polymer-selective
quantification of plastic debris in soil. The aim of this dissertation
was thus to assess, develop, and validate thermoanalytical methods for
the mass-based quantification of relevant polymers in and around
agricultural fields previously covered with fleeces, perforated foils,
and plastic mulches. Thermogravimetry/mass spectrometry (TGA/MS) enabled
direct plastic analyses of 50 mg of soil without any sample preparation.
With polyethylene terephthalate (PET) as a preliminary model, the method
limit of detection (LOD) was 0.7 g kg<sup>−1</sup>. But the missing
chromatographic separation complicated the quantification of polymer mixtures.
Therefore, a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method
was developed that additionally exploited the selective solubility of
polymers in specific solvents prior to analysis. By dissolving polyethylene
(PE), polypropylene (PP), and polystyrene (PS) in a mixture of
1,2,4-trichlorobenzene and *p*-xylene after density separation,
up to 50 g soil became amenable to routine plastic analysis. Method
LODs were 0.3–2.2 mg kg<sup>−1</sup>, and the recovery of 20 mg kg<sup>−1</sup>
PE, PP, and PS from a reference loamy sand was 86–105%. In the reference
silty clay, however, poor PS recoveries, potentially induced by the additional
separation step, suggested a semi-quantitative evaluation of PS. Yet, the
new solvent-based Py-GC/MS method enabled a first exploratory screening of
plastic-covered soil. It revealed PE, PP, and PS contents above LOD in
six fields (6% of all samples). In three fields, PE levels of
3–35 mg kg<sup>−1</sup> were associated with the use of 40 μm thin perforated
foils. By contrast, 50 μm PE films were not shown to induce plastic
levels above LOD. PP and PS contents of 5–19 mg kg<sup>−1</sup>
were restricted to single observations on four sites and potentially
originated from littering. The results suggest that the short-term use
of thicker and more durable plastic covers should be preferred to limit
plastic emissions and accumulation in soil. By providing mass-based
information on the distribution of the three most common plastics in
agricultural soil, this work may facilitate comparisons with modeling
and effect data and thus contribute to a better risk assessment and
regulation of plastics. However, the fate of plastic debris in the
terrestrial environment remains incompletely understood and needs to be
scrutinized in future, more systematic research. This should include the
study of aging processes, the interaction of plastics with other organic
and inorganic compounds, and the environmental impact of biodegradable
plastics and nanoplastics.

## Included Files and Folders

<dl>
<code>README.md</code>
<dd>
Readme file
</dd>
<code>thesis.pdf</code>
<dd>
Dissertation as PDF file
</dd>
<code>thesis.tex</code>
<dd>
Dissertation as editable LaTeX source file including all thesis contents
from the following subdirectories: <code>frontbackmatter/</code>,
<code>chapters/</code>, <code>appendices/</code>
</dd>
<code>proposal.pdf</code>
<dd>
Thesis proposal as PDF file
</dd>
<code>proposal.tex</code>
<dd>
Thesis proposal as editable LaTeX source file
</dd>
<code>references.bib</code>
<dd>
Complete bibliographical data of the references cited
</dd>
<code>figures/</code>
<dd>
Figures
</dd>
<code>tables/</code>
<dd>
Tables
</dd>
<code>supplements/</code>
<dd>
Supplemental (raw) data and code
</dd>
<code>cv/</code>
<dd>
Curriculum vitae
</dd>
</dl>
97 changes: 97 additions & 0 deletions supplements/esm1/README
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
Data from: Quantitative Analysis of Poly(ethylene terephthalate) Microplastics
in Soil via Thermogravimetry–Mass Spectrometry

Jan David (a), Zacharias Steinmetz (a), Jiří Kučerík (b), and
Gabriele E. Schaumann (a)

(a) Group of Environmental and Soil Chemistry, Institute for Environmental
Sciences, University of Koblenz-Landau, Fortstraße 7, 76829 Landau,
Germany
(b) Institute of Chemistry and Technology of Environmental Protection, Faculty
of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno,
Czech Republic

Corresponding author: Gabriele E. Schaumann (E-mail: schaumann@uni-landau.de)


Note
====

This collection contains data and R code to reproduce the findings published in
the following article:

David, J., Steinmetz, Z., Kučerík, J., and Schaumann, G. E.: Quantitative
Analysis of Poly(ethylene terephthalate) Microplastics in Soil via
Thermogravimetry–Mass Spectrometry, Analytical Chemistry, 2018


Files
=====

data TGA and DSC data
src R source files
src/func loading R packages, global variables, and functions


Getting started
===============

Please make sure that you use up-to-date software (see below). To reproduce data
processing and analysis, execute src/func/init.R before running the R scripts in
src.


System information
==================

R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Manjaro Linux

Matrix products: default
BLAS: /usr/lib/libblas.so.3.9.1
LAPACK: /usr/lib/liblapack.so.3.9.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] OpenSpecy_0.9.2 viridis_0.6.1 viridisLite_0.4.0 patchwork_1.1.1
[5] ggrepel_0.9.1 ggsignif_0.6.2 ggplot2_3.3.4 xtable_1.8-4
[9] multcomp_1.4-17 TH.data_1.0-10 MASS_7.3-54 survival_3.2-11
[13] mvtnorm_1.1-2 readxl_1.3.1 envalysis_0.5.1 data.table_1.14.0
[17] magrittr_2.0.1

loaded via a namespace (and not attached):
[1] httr_1.4.2 jsonlite_1.7.2 splines_4.1.0
[4] carData_3.0-4 osfr_0.2.8 gtools_3.9.2
[7] shiny_1.6.0 assertthat_0.2.1 latticeExtra_0.6-29
[10] cellranger_1.1.0 pillar_1.6.1 lattice_0.20-44
[13] glue_1.4.2 digest_0.6.27 promises_1.2.0.1
[16] RColorBrewer_1.1-2 colorspace_2.0-1 sandwich_3.0-1
[19] httpuv_1.6.1 htmltools_0.5.1.1 Matrix_1.3-3
[22] pkgconfig_2.0.3 httpcode_0.3.0 haven_2.4.1
[25] purrr_0.3.4 scales_1.1.1 later_1.2.0
[28] jpeg_0.1-8.1 openxlsx_4.2.4 rio_0.5.26
[31] tibble_3.1.2 generics_0.1.0 car_3.0-10
[34] ellipsis_0.3.2 cachem_1.0.5 withr_2.4.2
[37] hyperSpec_0.99-20201127 lazyeval_0.2.2 mime_0.10
[40] crayon_1.4.1 memoise_2.0.0 fs_1.5.0
[43] fansi_0.5.0 forcats_0.5.1 xml2_1.3.2
[46] foreign_0.8-81 tools_4.1.0 hms_1.1.0
[49] lifecycle_1.0.0 munsell_0.5.0 plotrix_3.8-1
[52] zip_2.2.0 signal_0.7-7 compiler_4.1.0
[55] hexView_0.3-4 rlang_0.4.11 grid_4.1.0
[58] drc_3.0-1 testthat_3.0.3 gtable_0.3.0
[61] codetools_0.2-18 abind_1.4-5 DBI_1.1.1
[64] curl_4.3.1 R6_2.5.0 gridExtra_2.3
[67] zoo_1.8-9 dplyr_1.0.7 fastmap_1.1.0
[70] utf8_1.2.1 stringi_1.6.2 crul_1.1.0
[73] Rcpp_1.0.6 vctrs_0.3.8 png_0.1-7
[76] tidyselect_1.1.1 lmtest_0.9-38
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
48 changes: 23 additions & 25 deletions supplements/esm1/src.R → supplements/esm1/src/src.R
Original file line number Diff line number Diff line change
@@ -1,12 +1,10 @@
#### Load packages and functions ####

setwd("~/Documents/PhD/Thesis/supplements/")
source("R/init.R")
source("func/init.R")

#### Examplary TGA/DTG curve ####

example <- list()
example$data <- fread("esm1/data/tga-dtg-sample.csv")
example$data <- fread("../data/tga-dtg-sample.csv")
example$data[, Sample := factor(Sample, c("LUFA soil", "PET in soil", "PET dust"))]

lty <- c("solid", "dashed", "solid")
Expand Down Expand Up @@ -35,13 +33,13 @@ example$mass <-
"Pure PET")) +
theme_publish(base_family = font) + theme(legend.direction = "vertical")
example$tga / example$dtg / example$mass + plot_annotation(theme = theme(plot.margin = margin()))
ggsave('../figures/tga-dtg-sample.pdf', scale = 1.5, width = marginwidth,
ggsave('../../../figures/tga-dtg-sample.pdf', scale = 1.5, width = marginwidth,
height = 3.5, unit = 'in', device = cairo_pdf)

#### TGA/MS curves ####

tga <- list()
tga$data <- fread("esm1/data/tga-ms.csv")
tga$data <- fread("../data/tga-ms.csv")

tga$data[, Label := paste0(toupper(substring(IS, 1, 1)), substring(IS, 2), " internal standard")]

Expand Down Expand Up @@ -70,13 +68,13 @@ tga$mz154 <-
guides(color = guide_colorbar(title.vjust = 1),
shape = guide_legend(title.vjust = 1))
tga$tga / tga$mz105 / tga$mz154 + plot_annotation(theme = theme(plot.margin = margin()))
ggsave('../figures/tga-ms.pdf', scale = 1.5, width = pagewidth,
ggsave('../../../figures/tga-ms.pdf', scale = 1.5, width = pagewidth,
height = 4, unit = 'in', device = cairo_pdf)

#### Calibration ####

cal <- list()
cal$data <- fread("esm1/data/tga-calibration.csv")
cal$data <- fread("../data/tga-calibration.csv")

cal$data[, Label := paste0(toupper(substring(IS, 1, 1)), substring(IS, 2), " internal standard")]

Expand Down Expand Up @@ -109,13 +107,13 @@ cal$plot154 <-
scale_y_continuous(label=scientific_10) +
theme_publish(base_family = font) + theme(strip.text.x = element_text(size=0))
cal$plot105 / cal$plot154 + plot_annotation(theme = theme(plot.margin = margin()))
ggsave('../figures/tga-calibration.pdf', scale = 1.5, width = pagewidth,
ggsave('../../../figures/tga-calibration.pdf', scale = 1.5, width = pagewidth,
height = 3, unit = 'in', device = cairo_pdf)

#### Capillary checks ####

cap <- list()
cap$data <- fread("esm1/data/tga-capillary-checks.csv")
cap$data <- fread("../data/tga-capillary-checks.csv")

cap$data[, Label := paste0(toupper(substring(IS, 1, 1)), substring(IS, 2), " internal standard")]
cap$data[PET > 30, Case := "40–50"]
Expand All @@ -133,12 +131,12 @@ ggplot(cap$data, aes(Temp, mz105*10^9, group = interaction(PET, Case, Type))) +
theme_publish(base_family = font) +
guides(color = guide_colorbar(title.vjust = 1),
shape = guide_legend(title.vjust = 1))
ggsave('../figures/tga-capillary-checks.pdf', scale = 1.5, width = pagewidth,
ggsave('../../../figures/tga-capillary-checks.pdf', scale = 1.5, width = pagewidth,
height = 2.2, unit = 'in', device = cairo_pdf)

#### Capillary pressure ####

cap$pressure <- fread("esm1/data/tga-capillary-pressure.csv")
cap$pressure <- fread("../data/tga-capillary-pressure.csv")
cap$pressure[, Date := as.Date(Date)]

ggplot(cap$pressure, aes(x = Date, y = Pressure * 10^6)) +
Expand All @@ -153,13 +151,13 @@ ggplot(cap$pressure, aes(x = Date, y = Pressure * 10^6)) +
ylab(expression("Pressure [10"^-9~"bar]")) +
scale_y_continuous(limits = c(7, 21)) +
theme_publish(base_family = font)
ggsave('../figures/tga-capillary-pressure.pdf', scale = 1.5, width = textwidth,
height = 2, unit = 'in', device = cairo_pdf)
ggsave('../../../figures/tga-capillary-pressure.pdf', scale = 1.5,
width = textwidth, height = 2, unit = 'in', device = cairo_pdf)

#### Polymer DSC ####

dsc <- list()
dsc$data <- fread("esm1/data/dsc.csv")
dsc$data <- fread("../data/dsc.csv")

ggplot(dsc$data, aes(Temp, AvgHF)) +
geom_line(aes(color = Sample)) +
Expand All @@ -170,13 +168,13 @@ ggplot(dsc$data, aes(Temp, AvgHF)) +
"Dust (PETKA CZ)",
"Reference (PlasticsEurope)")) +
theme_publish(base_family = font)
ggsave('../figures/dsc.pdf', scale = 1.5, width = textwidth,
ggsave('../../../figures/dsc.pdf', scale = 1.5, width = textwidth,
height = 2, unit = 'in', device = cairo_pdf)

#### Cysteine comparison ####

cys <- list()
cys$comp <- fread("esm1/data/cysteine-comparison.csv")
cys$comp <- fread("../data/cysteine-comparison.csv")
cys$comp[, Cys := as.factor(Cys)]

cys$comptga <-
Expand All @@ -194,13 +192,13 @@ cys$compmz33 <-
theme_publish(base_family = font) + theme(strip.text.x = element_text(size=0))
cys$comptga / cys$compmz33 +
plot_annotation(theme = theme(plot.margin = margin()))
ggsave('../figures/cysteine-comparison.pdf', scale = 1.5, width = textwidth,
height = 3, unit = 'in', device = cairo_pdf)
ggsave('../../../figures/cysteine-comparison.pdf', scale = 1.5,
width = textwidth, height = 3, unit = 'in', device = cairo_pdf)

#### Cysteine tests ####

cys$lin <- fread("esm1/data/cysteine-linearity.csv")
cys$deg <- fread("esm1/data/cysteine-degradation.csv")
cys$lin <- fread("../data/cysteine-linearity.csv")
cys$deg <- fread("../data/cysteine-degradation.csv")

cys$cal <- calibration(mz33 ~ Cys, data = cys$lin)
cys$conc <- cys$cal$model$model[,2]
Expand Down Expand Up @@ -241,12 +239,12 @@ cys$mz33 <-
shape = guide_legend(title.vjust = 1))
cys$calcurve / cys$tga / cys$mz33 +
plot_annotation(theme = theme(plot.margin = margin()))
ggsave('../figures/cysteine-tests.pdf', scale = 1.5, width = textwidth,
ggsave('../../../figures/cysteine-tests.pdf', scale = 1.5, width = textwidth,
height = 4, unit = 'in', device = cairo_pdf)

#### Control measurements ####
contr <- list()
contr$data <- fread("esm1/data/control-measurements.csv")
contr$data <- fread("../data/control-measurements.csv")
contr$melt <- melt(contr$data, id = c("PET", "IS"),
measure = c("mz18", "mz28", "mz44", "SigRatio"),
variable.name = "Mass", value.name = "Signal")
Expand Down Expand Up @@ -274,5 +272,5 @@ contr$masses <-
facet_wrap(~ Label)
contr$sigratio / contr$masses +
plot_annotation(theme = theme(plot.margin = margin()))
ggsave('../figures/control-measurements.pdf', scale = 1.5, width = pagewidth,
height = 3.5, unit = 'in', device = cairo_pdf)
ggsave('../../../figures/control-measurements.pdf', scale = 1.5,
width = pagewidth, height = 3.5, unit = 'in', device = cairo_pdf)
4 changes: 3 additions & 1 deletion supplements/esm2/README
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@ Gabriele E. Schaumann (a)

Corresponding author: Gabriele E. Schaumann (E-mail: schaumann@uni-landau.de)

See also: https://doi.org/10.6084/m9.figshare.11861664


Note
====
Expand All @@ -36,7 +38,7 @@ data/reports chromatogram reports listing all identified and
data/targets list of PE, PP, and PS target compounds with retention
times and CAS numbers
data/samples.csv sample list of the recovery experiment
data/seqtable.csv sequence table containing all Py-GC/MS measurements
data/seqtable.csv sequence table containing all Py-GC/MS measurements

see data/DESCRIPTION for detailed information on files types and contents

Expand Down
11 changes: 11 additions & 0 deletions supplements/esm2/src/func/init.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
wd <- getwd()
setwd(dirname(sys.frame(1)$ofile))

source("packages.R")
source("variables.R")
source("wrappers.R")
source("read_openchrom.R")
source("read_targets.R")

setwd(wd)
rm(wd)
Loading

0 comments on commit adc4dbf

Please sign in to comment.