-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfomcmpav2.py
131 lines (107 loc) · 4.13 KB
/
fomcmpav2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from __future__ import print_function
import keras
from keras import layers
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense
from keras.layers.core import Dense, Dropout, Activation
from hyperopt import Trials, STATUS_OK, tpe
from hyperas import optim
from hyperas.distributions import choice, uniform
import numpy as np
import pandas as pd
'''
Best performing model chosen hyper-parameters:
{'Dense': 64, 'Dense_1': 16, 'Dropout_1': 0.3838088604298333, 'Dense_2': 8, 'Dropout': 0.9128294469805703}
'''
files = ['Datasets/feb99', 'Datasets/july99', 'Datasets/feb00', 'Datasets/july00',
'Datasets/feb01', 'Datasets/july01', 'Datasets/feb02', 'Datasets/july02',
'Datasets/feb03', 'Datasets/july03', 'Datasets/feb04', 'Datasets/july04',
'Datasets/feb05', 'Datasets/july05', 'Datasets/feb06', 'Datasets/july06',
'Datasets/feb07', 'Datasets/july07', 'Datasets/feb08', 'Datasets/july08',
'Datasets/feb09', 'Datasets/july09', 'Datasets/feb10', 'Datasets/july10',
'Datasets/feb11', 'Datasets/july11', 'Datasets/feb12', 'Datasets/july12',
'Datasets/feb13', 'Datasets/july13', 'Datasets/feb14', 'Datasets/july14',
'Datasets/feb15', 'Datasets/july15']
mydata = "FOMCSentimentAnalysis.xlsx"
maxlen = 20000
training_samples = 30
validation_samples = 4
max_words = 20000
embedding_dim = 256
samples = []
for x in files:
sample = open(x, 'r', encoding='utf-8')
sample = sample.read()
samples.append(sample)
labels = []
excel_data = pd.ExcelFile(mydata)
excel_sheet = excel_data.parse('Sheet1')
eur_usd_change = excel_sheet["EUR/USD_Change"]
labels = np.asarray(eur_usd_change)
tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(samples)
sequences = tokenizer.texts_to_sequences(samples)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
data = pad_sequences(sequences, maxlen=maxlen)
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
x_train = data[:training_samples]
y_train = labels[:training_samples]
x_val = data[training_samples: training_samples + validation_samples]
y_val = labels[training_samples: training_samples + validation_samples]
model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
#model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.9128294469805703))
model.add(Dense(16, activation='relu'))
#model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.3838088604298333))
model.add(Dense(8, activation='relu'))
#model.add(layers.BatchNormalization())
#model.add(layers.Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
callbacks_list = [
keras.callbacks.ModelCheckpoint(
filepath='my_model_test.h5',
monitor='val_loss',
save_best_only=True
)
]
model.fit(x_train, y_train,
epochs=50,
batch_size=32,
verbose=2,
callbacks=callbacks_list,
validation_data=(x_val, y_val))
files_test = ['Datasets/feb16', 'Datasets/july16', 'Datasets/feb17', 'Datasets/july17','Datasets/feb18']
mydata_test = "FOMCSentimentAnalysis_Test.xlsx"
samples_test = []
for x in files_test:
sample_test = open(x, 'r',encoding='utf-8')
sample_test = sample_test.read()
samples_test.append(x)
labels_test = []
excel_data_test = pd.ExcelFile(mydata_test)
excel_sheet_test = excel_data_test.parse('Sheet1')
eur_usd_change_test = excel_sheet_test["EUR/USD_Change"]
labels_test = np.asarray(eur_usd_change_test)
sequences_test = tokenizer.texts_to_sequences(samples_test)
x_test = pad_sequences(sequences_test, maxlen=maxlen)
y_test = np.asarray(labels_test)
model.load_weights('my_model_test.h5')
score = model.evaluate(x_test, y_test)
print('Test loss:', score[0])
print('Test accuracy:', score[1])