-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_fns.py
543 lines (433 loc) · 19.4 KB
/
eval_fns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import yaml
import time
import numpy as np
from functools import reduce
import copy
with open('./configs/config.yml') as file:
configs_global = yaml.load(file, Loader = yaml.FullLoader)
def gen_dict_class_idx(configs):
# all_class = configs['CLASS_NAME']
all_class = copy.deepcopy(configs['CLASS_NAME'])
merge_class = configs['MERGE_CLASS']
if merge_class is not None:
for k,v in merge_class.items():
all_class.append(k)
class_idx_to_name = {}
class_name_to_idx = {}
for i, name in enumerate(all_class):
class_idx_to_name[i] = name
class_name_to_idx[name] = i
return class_idx_to_name, class_name_to_idx
def get_split_parts(num, num_part):
same_part = num // num_part
remain_num = num % num_part
if remain_num == 0:
return [same_part] * num_part
else:
return [same_part] * num_part + [remain_num]
def iou_box(gt_boxes,dt_boxes):
"""
Args:
gt_boxes,dt_boxes:[num_box,4] array
"""
num_gt = gt_boxes.shape[0]
num_dt = dt_boxes.shape[0]
gt_inds = []
dt_inds = []
iou = np.zeros((num_gt,num_dt),dtype=np.float32)
# for i in range(num_gt):
# gt_inds.append(np.where(gt_boxes[i,:]!=False)[0])
# for j in range(num_dt):
# dt_inds.append(np.where(dt_boxes[j,:]!=False)[0])
for k in range(num_gt):
for l in range(num_dt):
one_gt_inds = gt_boxes[k]
one_dt_inds = dt_boxes[l]
# get overlapping area
x1 = max(one_gt_inds[0],one_dt_inds[0])
y1 = max(one_gt_inds[1],one_dt_inds[1])
x2 = min(one_gt_inds[2],one_dt_inds[2])
y2 = min(one_gt_inds[3],one_dt_inds[3])
# compute width and height of overlapping area
w = x2-x1
h = y2-y1
if(w<=0 or h<=0):
iou[k,l]=0
else:
intersect = w*h
gt_area = (one_gt_inds[2]-one_gt_inds[0])*(one_gt_inds[3]-one_gt_inds[1])
dt_area = (one_dt_inds[2]-one_dt_inds[0])*(one_dt_inds[3]-one_dt_inds[1])
union = intersect/(gt_area+dt_area-intersect)
iou[k,l] = union
return iou
#calculate overlaps for each pair of gt and dt
# input gt_annos, dt_annos, pcd_paths for point iou
# return overlaps: list. len(overlaps) = len(gt_annos)
def calculate_iou(gt_annos,dt_annos,iou_opt,num_parts=1):
assert len(gt_annos) == len(dt_annos)
total_dt_num = np.stack([len(a["cls"]) for a in dt_annos], 0)
total_gt_num = np.stack([len(a["cls"]) for a in gt_annos], 0)
num_examples = len(gt_annos)
split_parts = get_split_parts(num_examples, num_parts)
parted_overlaps = []
example_idx = 0
for num_part in split_parts:
gt_annos_part = gt_annos[example_idx:example_idx + num_part]
dt_annos_part = dt_annos[example_idx:example_idx + num_part]
gt_num_list = np.array([len(a['cls']) for a in gt_annos_part])
dt_num_list = np.array([len(a['cls']) for a in dt_annos_part])
gt_num_part = np.sum(gt_num_list)
dt_num_part = np.sum(dt_num_list)
overlap_part = np.zeros((gt_num_part,dt_num_part), dtype = np.float32)
id_gt = 0
id_dt = 0
#读取每一帧中的gt与dt
for i in range(num_part):
bbox_coor = gt_annos_part[i]["bbox"]
gt_boxes = np.concatenate([bbox_coor], axis=1)
bbox_coor = dt_annos_part[i]["bbox"]
dt_boxes = np.concatenate([bbox_coor], axis=1)
iou = iou_box(gt_boxes,dt_boxes)
num_gt_one_image = gt_boxes.shape[0]
num_dt_one_image = dt_boxes.shape[0]
overlap_part[id_gt:id_gt+num_gt_one_image,id_dt:id_dt+num_dt_one_image]=iou
id_gt+=num_gt_one_image
id_dt+=num_dt_one_image
parted_overlaps.append(overlap_part)
example_idx += num_part
overlaps = []
example_idx = 0
for j, num_part in enumerate(split_parts):
gt_annos_part = gt_annos[example_idx:example_idx + num_part]
dt_annos_part = dt_annos[example_idx:example_idx + num_part]
gt_num_idx, dt_num_idx = 0, 0
for i in range(num_part):
gt_box_num = total_gt_num[example_idx + i]
dt_box_num = total_dt_num[example_idx + i]
overlaps.append(
parted_overlaps[j][gt_num_idx:gt_num_idx + gt_box_num,
dt_num_idx:dt_num_idx + dt_box_num])
gt_num_idx += gt_box_num
dt_num_idx += dt_box_num
example_idx += num_part
return overlaps,parted_overlaps,total_gt_num,total_dt_num
def filter_gt_annos(gt_annos,configs):
eval_by_class = configs['CLASS_EVAL']
eval_by_difficulty = configs['DIFFICULTY_EVAL']
## FILTER CLASS
class_names = configs['CLASS_NAME']
class_idx_to_name = {}
class_name_to_idx = {}
current_classe_int = []
curr_class = []
if(eval_by_class):
merge_class = configs['MERGE_CLASS']
curr_class = configs['CURRENT_CLASS']
curr_class_name = []
class_idx_to_name, class_name_to_idx = gen_dict_class_idx(configs)
for i, name in enumerate(curr_class):
current_classe_int.append(class_name_to_idx[name])
curr_class_name.append(class_idx_to_name[class_name_to_idx[name]])
num_class = len(current_classe_int)
for gt_anno in gt_annos:
gt_filtered_index = []
for cls_int in current_classe_int:
mask = (np.where(gt_anno['cls']==cls_int))[0]
gt_filtered_index.append(mask)
# print(len(gt_filtered_index))
if merge_class is not None:
for name, subclasses in merge_class.items():
masks_subclasses = []
for i, name_subclass in enumerate(subclasses):
masks_subclasses.append(np.where(gt_anno['cls']==class_name_to_idx[name_subclass])[0])
mask = reduce(np.union1d, masks_subclasses)
gt_filtered_index.append(mask)
gt_anno['class_filter'] = gt_filtered_index
else:
# consider all categories as one category
for gt_anno in gt_annos:
gt_filtered_index = []
gt_filtered_index.append(np.int32(gt_anno['idx'].reshape(-1,)))
gt_anno['class_filter'] = gt_filtered_index
## FILTER DIFFICULTY
if(eval_by_difficulty):
curr_diff = configs['DIFFICULTY']
for gt_anno in gt_annos:
gt_filtered_index =[]
for diff in curr_diff:
mask = (np.where(gt_anno['difficulty']==diff))[0]
gt_filtered_index.append(mask)
gt_anno['diff_filter'] = gt_filtered_index
else:
for gt_anno in gt_annos:
gt_filtered_index =[]
gt_filtered_index.append(np.int32(gt_anno['idx'].reshape(-1,)))
gt_anno['diff_filter'] = gt_filtered_index
return gt_annos
# according to config file,add filter to dt
def filter_dt_annos(dt_annos,configs):
eval_by_class = configs['CLASS_EVAL']
eval_by_difficulty = configs['DIFFICULTY_EVAL']
## FILTER CLASS
class_names = configs['CLASS_NAME']
class_idx_to_name = {}
class_name_to_idx = {}
current_classe_int = []
curr_class = []
if(eval_by_class):
merge_class = configs['MERGE_CLASS']
curr_class = configs['CURRENT_CLASS']
curr_class_name = []
class_idx_to_name, class_name_to_idx = gen_dict_class_idx(configs)
for i, name in enumerate(curr_class):
current_classe_int.append(class_name_to_idx[name])
curr_class_name.append(class_idx_to_name[class_name_to_idx[name]])
num_class = len(current_classe_int)
for dt_anno in dt_annos:
dt_filtered_index = []
for cls_int in current_classe_int:
mask = (np.where(dt_anno['cls']==cls_int))[0]
dt_filtered_index.append(mask)
if merge_class is not None:
for name, subclasses in merge_class.items():
masks_subclasses = []
for i, name_subclass in enumerate(subclasses):
masks_subclasses.append(np.where(dt_anno['cls']==class_name_to_idx[name_subclass])[0])
mask = reduce(np.union1d, masks_subclasses)
dt_filtered_index.append(mask)
dt_anno['class_filter'] = dt_filtered_index
else:
# filter the same way as gt
for dt_anno in dt_annos:
dt_filtered_index = []
dt_filtered_index.append(np.int32(dt_anno['idx']).reshape(-1,))
dt_anno['class_filter'] = dt_filtered_index
return dt_annos
# calculate # of gt and dt
def calculate_gt_dt_num(gt_annos, dt_annos, curr_cls, curr_diff):
total_gt, total_dt = 0,0
for m in range(len(gt_annos)):
gt_anno = gt_annos[m]
dt_anno = dt_annos[m]
indices_gt_cls = gt_anno['class_filter'][curr_cls]
indices_gt_diff = gt_anno['diff_filter'][curr_diff]
indices_gt = reduce(np.intersect1d, (indices_gt_cls, indices_gt_diff))
indices_dt_cls = dt_anno['class_filter'][curr_cls]
indices_dt = indices_dt_cls
total_gt += len(indices_gt)
total_dt += len(indices_dt)
return total_gt,total_dt
# according to thresholds got, samplling num_sample_pts threholds
def get_thresholdsv2(scores, num_gt, num_sample_pts=30, marker_score=0.5):
scores.sort()
size = len(scores)
thresholds=[marker_score]
if num_sample_pts<2:
# print('Only one sample threshold point is set')
return thresholds
if size<1:
# print('No tp is found')
return thresholds
dist = size//num_sample_pts
for i in range(num_sample_pts):
score = scores[i*dist]
thresholds.append(scores[i*dist])
return thresholds
# according each gt and dt, find thresholds for pr curve. one tp --> one thresholds based on iou
def get_pr_thresholds_diff(gt_anno, dt_anno, overlaps, curr_cls, curr_diff, min_overlaps):
indices_gt_cls = gt_anno['class_filter'][curr_cls]
indices_gt_diff = gt_anno['diff_filter'][curr_diff]
indices_gt = reduce(np.intersect1d, ( indices_gt_cls, indices_gt_diff))
num_valid_gt = len(indices_gt)
indices_dt_cls = dt_anno['class_filter'][curr_cls]
indices_dt = indices_dt_cls
thresholds = np.zeros((len(gt_anno['cls']), ))
# print(gt_anno['path'], dt_anno['path'])
# print(indices_gt, indices_dt)
if(len(indices_gt)==0):
return np.zeros([0]), num_valid_gt
if(len(indices_dt)==0):
return np.zeros([0]), num_valid_gt
det_size = len(dt_anno['cls'])
assigned_detection = [False] * det_size
tp, fp, fn = 0, 0, 0
thresh_idx=0
for index_gt in indices_gt:
# gt_anno_filtered = gt_anno[index_gt]
gt_cls = gt_anno['cls'][index_gt,0]
min_overlap = min_overlaps[gt_cls]
# print min_overlap
det_idx = -1
max_score=-10000
dt_scores = dt_anno['score']
for index_dt in indices_dt:
if(assigned_detection[index_dt]):
continue
dt_score = dt_scores[index_dt][0]
overlap = overlaps[index_gt,index_dt]
if(dt_score > max_score and overlap>min_overlap):
det_idx = index_dt
max_score = dt_score
if(max_score > -10000):
tp+=1
thresholds[thresh_idx] = dt_scores[det_idx]
thresh_idx+=1
assigned_detection[det_idx]=True
# print(tp)
return thresholds[:thresh_idx], num_valid_gt
# according to thresholds got, samplling num_sample_pts threholds
def get_thresholds(scores, num_gt, num_sample_pts=30, marker_score=0.5):
scores.sort()
size = len(scores)
thresholds=[marker_score]
if num_sample_pts<2:
# print('Only one sample threshold point is set')
return thresholds
if size<1:
# print('No tp is found')
return thresholds
dist = size//num_sample_pts
for i in range(num_sample_pts):
score = scores[i*dist]
thresholds.append(scores[i*dist])
return thresholds
##according to thresh find tp,fp,fn
def compute_statictics(gt_anno,dt_anno,overlaps,curr_cls,curr_diff,thresh,min_overlaps):
## for corner cases
indices_gt_cls = gt_anno['class_filter'][curr_cls]
indices_gt_diff = gt_anno['diff_filter'][curr_diff]
indices_gt = reduce(np.intersect1d, ( indices_gt_cls, indices_gt_diff))
indices_dt_cls = dt_anno['class_filter'][curr_cls]
indices_dt = indices_dt_cls
fp_ign_ids = []
tp, fp, fn, fp_ign = 0, 0, 0, 0
if(len(indices_gt)==0 and len(indices_dt) !=0):
fp = np.sum(np.array(dt_anno['score'][indices_dt]>thresh, dtype=np.int32))
fp_ign = fp.copy()
return tp, fp, fn, fp_ign
if(len(indices_gt) !=0 and len(indices_dt) ==0):
fn = len(indices_gt)
return tp, fp, fn, fp_ign
if(len(indices_gt)==0 and len(indices_dt) ==0):
return tp, fp, fn, fp_ign
delta_theta = []
delta_bbox = []
valid_detection = -1
assigned_detection = [False] * len(dt_anno['cls'])
for index_gt in indices_gt:
gt_cls = gt_anno['cls'][index_gt,0]
min_overlap = min_overlaps[gt_cls]
det_idx=-1
max_overlap=0
valid_detection=-1
for index_dt in indices_dt:
## finde tp
dt_score = dt_anno['score'][index_dt]
overlap = overlaps[index_gt, index_dt]
if dt_score < thresh:
continue
if (assigned_detection[index_dt]):
continue
if (overlap > min_overlap and valid_detection == -1):
valid_detection = 1
det_idx = index_dt
max_overlap = overlap
elif (overlap > min_overlap and valid_detection ==1):
if (overlap > max_overlap):
max_overlap = overlap
det_idx = index_dt
if(valid_detection == -1):
fn+=1
elif(valid_detection ==1):
# print('index:', index_gt, det_idx, 'overlap: ',max_overlap, 'score: ',dt_anno['score'][det_idx])
tp+=1
assigned_detection[det_idx] = True
for id_dt in indices_dt:
dt_score = dt_anno['score'][id_dt]
ignore_thresh = dt_score<thresh
if(not(assigned_detection[id_dt] or ignore_thresh)):
fp+=1
return tp,fp,fn,fp_ign
#The main evaluation function
#input: gt_annos,dt_annos,overlaps,configs
#output: et/ot precision recall .etc
def do_eval(gt_annos,dt_annos,overlaps,configs):
assert len(gt_annos) == len(dt_annos)
num_frames = len(gt_annos)
eval_by_class = configs['CLASS_EVAL']
eval_by_difficulty = configs['DIFFICULTY_EVAL']
min_overlaps = configs['MIN_IOU_THRESH']
class_names = configs['CLASS_NAME']
class_idx_to_name = {0:'object'}
class_name_to_idx = {'object':0}
current_classe_int = [0]
if(eval_by_class):
class_idx_to_name, class_name_to_idx = gen_dict_class_idx(configs)
curr_class = configs['CURRENT_CLASS']
merge_class = configs['MERGE_CLASS']
curr_class_name = []
current_classe_int = []
for i, name in enumerate(curr_class):
current_classe_int.append(class_name_to_idx[name])
curr_class_name.append(class_idx_to_name[class_name_to_idx[name]])
if merge_class is not None:
for name, subclasses in merge_class.items():
current_classe_int.append(class_name_to_idx[name])
curr_class_name.append(class_idx_to_name[class_name_to_idx[name]])
num_class = len(current_classe_int)
# print(current_classe_int)
curr_diffs = [0]
if(eval_by_difficulty):
curr_diffs = configs['DIFFICULTY']
num_class = len(current_classe_int)
num_difficulty = len(curr_diffs)
marker_scores = configs['MARKER_THRESH']
N_SAMPLE_PTS = configs['NUM_TREHSH_SAMPLE']
marker_scores = configs['MARKER_THRESH']
### basic evaluation
threshes = np.zeros([num_class,num_difficulty,1,N_SAMPLE_PTS])
all_statistics = np.zeros([num_class, num_difficulty, 3,N_SAMPLE_PTS])
total_num_gt = np.zeros([num_class,num_difficulty,1,1])
total_num_dt = np.zeros([num_class,num_difficulty,1,1])
for i,curr_cls in enumerate(current_classe_int):
curr_cls_name = class_idx_to_name[curr_cls] #car Pedestrain .eta
for j,curr_diff in enumerate(curr_diffs): #[0,1,2]
## statistic gt, dt nums
num_gt, num_dt = calculate_gt_dt_num(gt_annos, dt_annos, i, j)
total_num_gt[i,j,0,0]=num_gt
total_num_dt[i,j,0,0]=num_dt
## statistic pr/aos curve
print('class:', class_idx_to_name[curr_cls], ' difficulty:', curr_diff)
thresholdss = []
total_num_valid_gt = 0
for l in range(len(gt_annos)):
thresholds, num_valid_gt = get_pr_thresholds_diff(gt_annos[l],dt_annos[l],overlaps[l],i,j,min_overlaps)
thresholdss += thresholds.tolist()
total_num_valid_gt+=num_valid_gt
thresholdss = np.array(thresholdss)
thresholdss = np.unique(thresholdss)
thresholds = get_thresholdsv2(thresholdss, total_num_valid_gt, num_sample_pts=N_SAMPLE_PTS-1, marker_score=marker_scores[i])
thresholds = np.array(thresholds)
print(thresholds)
for t,thresh in enumerate(thresholds):
total_tp,total_fp,total_fn,total_fp_ignore = 0,0,0,0
# record score 0.5 index
for m in range(len(gt_annos)):
tp,fp,fn,fp_jgnore = compute_statictics(gt_annos[m],dt_annos[m],overlaps[m],i,j,thresh,min_overlaps)
total_tp+=tp
total_fp+=fp
total_fn+=fn
total_fp_ignore+=fp_jgnore
prec_base = total_tp+total_fp
rec_base = total_tp+total_fn
if prec_base<=0:
prec_base = 1
if rec_base<=0:
rec_base = 1
# print(thresh, total_tp, total_fp, total_fn, float(total_tp)/float(prec_base), float(total_tp)/float(rec_base))
all_statistics[i,j,0,t]+=total_tp
all_statistics[i,j,1,t]+=total_fp
all_statistics[i,j,2,t]+=total_fn
for m in range(len(thresholds)):
threshes[i,j,0,m] = thresholds[m]
return threshes,total_num_gt,total_num_dt,all_statistics