-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathops.py
63 lines (43 loc) · 1.83 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
try:
import tensorflow.compat.v1 as tf
except ImportError:
import tensorflow as tf
# pad = (k-1) // 2 = SAME !
# output = ( input - k + 1 + 2p ) // s
def snconv2d(x, channels, kernel=4, stride=2, use_bias=True, kernel_initializer=tf.random_normal_initializer(stddev=0.02), scope=None):
with tf.variable_scope(scope, default_name='snconv2d'):
w = tf.get_variable("kernel", shape=[kernel, kernel, x.get_shape()[-1], channels], initializer=kernel_initializer)
bias = tf.get_variable("bias", [channels], initializer=tf.constant_initializer(0.0))
x = tf.nn.conv2d(input=x, filter=spectral_norm(w),
strides=[1, stride, stride, 1], padding='VALID')
if use_bias :
x = tf.nn.bias_add(x, bias)
return x
def spectral_norm(w, iteration=1):
w_shape = w.shape.as_list()
w = tf.reshape(w, [-1, w_shape[-1]])
u = tf.get_variable("u", [1, w_shape[-1]], initializer=tf.random_normal_initializer(), trainable=False)
u_hat = u
v_hat = None
for i in range(iteration):
"""
power iteration
Usually iteration = 1 will be enough
"""
v_ = tf.matmul(u_hat, tf.transpose(w))
v_hat = tf.nn.l2_normalize(v_)
u_ = tf.matmul(v_hat, w)
u_hat = tf.nn.l2_normalize(u_)
u_hat = tf.stop_gradient(u_hat)
v_hat = tf.stop_gradient(v_hat)
sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat))
with tf.control_dependencies([u.assign(u_hat)]):
w_norm = w / sigma
w_norm = tf.reshape(w_norm, w_shape)
return w_norm
def celu(x, alpha=1.0):
r"""Tensorflow Implementation of CELU.
.. math::
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
"""
return tf.nn.relu(x) + tf.minimum(0, alpha * (tf.exp(x / alpha) - 1))