-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
78 lines (64 loc) · 4.16 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
try:
import tensorflow.compat.v1 as tf
except ImportError:
import tensorflow as tf
from ops import snconv2d
class PatchGenCN():
def __init__(self, img_size, opt, name):
self.img_nc = opt.img_nc
self.img_size = img_size
self.name = name
def __call__(self, img, is_training=None):
kernel_init = tf.random_normal_initializer(stddev=0.005)
activation = tf.nn.elu
norm_layer = None
if self.img_size < 32:
return ebm_sm(img, kernel_init=kernel_init, norm_layer=norm_layer, activation=activation, name=self.name)
elif self.img_size < 64:
return ebm_sm(img, kernel_init=kernel_init, norm_layer=norm_layer, activation=activation, name=self.name)
elif self.img_size < 128:
return ebm_md(img, kernel_init=kernel_init, norm_layer=norm_layer, activation=activation, name=self.name)
elif self.img_size < 256:
return ebm_md(img, kernel_init=kernel_init, norm_layer=norm_layer, activation=activation, name=self.name)
else:
raise NotImplementedError("Current model does not support image size >= 256.")
def conv_block(inputs, num_filters, kernel_size, strides, padding, kernel_init, sn=True, norm_layer=None, activation=None):
if padding.lower() == 'same':
pad_size = (kernel_size - 1) // 2
inputs = tf.pad(inputs, [[0, 0], [pad_size, pad_size], [pad_size, pad_size], [0, 0]], mode='REFLECT')
else:
pad_size = 0
if sn:
out = snconv2d(inputs, num_filters, kernel_size, stride=strides, kernel_initializer=kernel_init)
else:
out = tf.layers.conv2d(inputs, num_filters, kernel_size, strides, padding, kernel_initializer=kernel_init)
if norm_layer is not None:
out = norm_layer(out)
if activation is not None:
out = activation(out)
return out
def ebm_sm(img, kernel_init, norm_layer, activation, name):
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
out = conv_block(img, 64, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 32, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 32, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 32, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 1, 3, strides=1, padding='valid', kernel_init=kernel_init, sn=False)
return out
def ebm_md(img, kernel_init, norm_layer, activation, name):
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
# receptive_field = (15 - 1) * 1 + 3 = 17
out = conv_block(img, 128, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 64, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 64, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 64, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 1, 3, strides=1, padding='valid', kernel_init=kernel_init, sn=False)
return out
def ebm_lg(img, kernel_init, norm_layer, activation, name):
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
out = conv_block(img, 128, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 128, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 64, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 64, 3, strides=1, padding='valid', kernel_init=kernel_init, norm_layer=norm_layer, activation=activation)
out = conv_block(out, 1, 3, strides=1, padding='valid', kernel_init=kernel_init)
return out