-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
59 lines (49 loc) · 1.65 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from setuptools import setup
from os import path
this_directory = path.abspath(path.dirname(__file__))
version = {}
with open("timesmash/_version.py") as fp:
line = fp.read()
#print(line)
ls = line.split('.')
last = str(int(ls[-1].split('"')[0]) + 1) + '"'
ls[-1] = last
#print('.'.join(ls))
ls[-1] = last
exec(line, version)
with open("timesmash/_version.py", "w") as fp:
fp.write('.'.join(ls))
with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(name='timesmash',
version=version['__version__'],
packages=['timesmash', 'timesmash.bin'],
keywords='timeseries',
install_requires=['pandas', 'numpy', 'scikit-learn'],
include_package_data=True,
package_data={
'bin':
['bin/smash',
'bin/embed',
'bin/smashmatch',
'bin/Quantizer',
'bin/serializer',
'bin/genESeSS',
'bin/genESeSS_feature',
'bin/lsmash',
'bin/XgenESeSS'
]
},
# metadata for PyPI upload
url='https://github.com/zeroknowledgediscovery/timesmash',
maintainer_email='virotaru@uchicago.edu',
maintainer='Victor Rotaru',
description=('Quantifier of universal similarity amongst arbitrary data'
+ ' streams without a priori knowledge, features, or'
+ ' training.'),
long_description=long_description,
long_description_content_type='text/markdown',
classifiers=[
"Programming Language :: Python :: 3"
],
)