-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine.py
240 lines (192 loc) · 8.85 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
from __future__ import print_function
import numpy as np
from models.model_bases import summary
import torch
from dataset.corpora import PAD, EOS, EOT
import os
import pickle
from models.dmm import INFER, TRAIN
from collections import defaultdict
import logging
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
import json
from utils import Pack
logger = logging.getLogger()
class LossManager(object):
def __init__(self):
self.losses = defaultdict(list)
self.backward_losses = []
def add_loss(self, loss):
for key, val in loss.items():
if val is not None:
if type(val) is torch.Tensor:
self.losses[key].append(val.item())
else:
self.losses[key].append(val)
def add_backward_loss(self, loss):
self.backward_losses.append(loss.item())
def clear(self):
self.losses = defaultdict(list)
self.backward_losses = []
def pprint(self, name, window=None, prefix=None):
str_losses = []
for key, loss in self.losses.items():
if loss is None:
continue
avg_loss = np.average(loss) if window is None else np.average(loss[-window:])
str_losses.append("{} {:.3f}".format(key, avg_loss))
if 'nll' in key:
str_losses.append("PPL({}) {:.3f}".format(key, avg_loss))
if prefix:
return "{}: {} {}".format(prefix, name, " ".join(str_losses))
else:
return "{} {}".format(name, " ".join(str_losses))
def avg_loss(self):
return np.mean(self.backward_losses)
def print_topic_words(decoder, vocab_dic, n_top_words=10):
beta_exp = decoder.weight.data.cpu().numpy().T
for k, beta_k in enumerate(beta_exp):
topic_words = [vocab_dic[w_id] for w_id in np.argsort(beta_k)[:-n_top_words-1:-1]]
yield 'Topic {}: {}'.format(k, ' '.join(x.encode('utf-8') for x in topic_words))
def seq2bowids(model, seq_data):
seq_words = [model.vocab_seq[w_id] for w_id in seq_data]
return list(filter(lambda x: x is not None, [model.vocab_bow.token2id.get(w) for w in seq_words]))
def bow2seqids(model, bow_data):
bow_words = [model.vocab_bow[w_id] for w_id in bow_data]
return list(filter(lambda x: x is not None, [model.vocab_seq.token2id.get(w) for w in bow_words]))
def get_bow_sent(model, data):
sent = [model.vocab_bow[w_id] for w_id in data]
return sent
def get_seq_sent(model, data):
sent = [model.vocab_seq[w_id] for w_id in data]
return sent
def train(model, train_feed, test_feed, config):
patience = 10 # wait for at least 10 epoch before stop
valid_loss_threshold = np.inf
best_valid_loss = np.inf
batch_cnt = 0
optimizer = model.get_optimizer(config)
done_epoch = 0
train_loss = LossManager()
model.train()
logger.info(summary(model, show_weights=False))
logger.info("**** Training Begins ****")
logger.info("**** Epoch 0/{} ****".format(config.max_epoch))
inference(model, test_feed, config, num_batch=None)
while True:
train_feed.epoch_init(config, verbose=done_epoch==0, shuffle=True)
while True:
batch = train_feed.next_batch()
if batch is None:
break
if config.annealing_steps > 0 and batch_cnt < config.annealing_steps:
# compute the KL annealing factor approriate for the current mini-batch in the current epoch
annealing_factor = 0.1 + 0.9 * (float(batch_cnt + 1) / float(config.annealing_steps))
else:
# by default the KL annealing factor is unity
annealing_factor = 1.0
if batch_cnt == config.freeze_step:
# update optimizer with l2 penalty
config.weight_deday = 0.2
# change to adagrad
config.op = "adagrad"
config.init_lr = 0.01
optimizer = model.get_optimizer(config)
# shrink ckpt_step and print_step
config.print_step = 20
config.ckpt_step = 100
optimizer.zero_grad() # clean all grad params
# get training batches
batch_data = model.get_batch(batch)
loss = model(batch_data)
model.backward(batch_cnt, loss, annealing_factor)
optimizer.step()
batch_cnt += 1
train_loss.add_loss(loss)
if batch_cnt % config.print_step == 0:
logger.info(train_loss.pprint("Train", window=config.print_step,
prefix="{}/{}-({:.3f})".format(batch_cnt % config.ckpt_step,
config.ckpt_step, annealing_factor)))
# update l1 strength
if config.use_l1_reg and batch_cnt < config.freeze_step:
model.reg_l1_loss.update_l1_strength(model.ntm.x_decoder.weight)
if batch_cnt % config.ckpt_step == 0:
logger.info("\n=== Evaluating Model ===")
done_epoch += 1
# validation
logging.info("Discourse Words:")
logging.info('\n'.join(print_topic_words(model.discm.x_decoder, model.vocab_bow)))
logging.info("Topic Words:")
logging.info("\n".join(print_topic_words(model.ntm.x_decoder, model.vocab_bow)))
logger.info(train_loss.pprint("Train"))
valid_loss = validate(model, test_feed, config, batch_cnt)
inference(model, test_feed, config, num_batch=None)
# update early stopping stats
if valid_loss < best_valid_loss:
if valid_loss <= valid_loss_threshold * config.improve_threshold:
patience = max(patience,
done_epoch * config.patient_increase)
valid_loss_threshold = valid_loss
logger.info("Update patience to {}".format(patience))
if config.save_model:
logger.info("Model Saved.")
torch.save(model.state_dict(),
os.path.join(config.session_dir, "model"))
best_valid_loss = valid_loss
if done_epoch >= config.max_epoch \
or config.early_stop and patience <= done_epoch:
if done_epoch < config.max_epoch:
logger.info("!!Early stop due to run out of patience!!")
logger.info("Best validation loss %f" % best_valid_loss)
return
# exit eval model
model.train()
train_loss.clear()
logger.info("\n**** Epcoch {}/{} ****".format(done_epoch,
config.max_epoch))
def validate(model, valid_feed, config, batch_cnt=None):
model.eval()
valid_feed.epoch_init(config, shuffle=False, verbose=True)
losses = LossManager()
while True:
batch = valid_feed.next_batch()
if batch is None:
break
batch_data = model.get_batch(batch)
loss = model(batch_data)
losses.add_loss(loss)
losses.add_backward_loss(model.valid_loss(loss, batch_cnt))
valid_loss = losses.avg_loss()
logger.info(losses.pprint(valid_feed.name))
model.train()
return valid_loss
def inference(model, data_feed, config, num_batch=1, dest_f=None):
model.eval()
pre_batch_size = config.batch_size
# config.batch_size = 5
data_feed.epoch_init(config, ignore_residual=False, shuffle=num_batch is not None, verbose=False)
logger.info("Inference: {} batches".format(data_feed.num_batch
if num_batch is None
else num_batch))
pred_lst = []
corr, total = 0, 0
while True:
batch = data_feed.next_batch()
if batch is None or (num_batch is not None
and data_feed.ptr > num_batch):
break
data_batch = model.get_batch(batch)
resp = model(data_batch, mode=INFER)
# record pred and true items
pred_ = resp.pred.squeeze()
pred = pred_.cpu().data.numpy()
pred_lst.append(pred)
pred_vec = np.concatenate(pred_lst)
true_vec = np.ones_like(pred_vec)
true_vec[:true_vec.size // 2] = 0 # make half to true vec to be 0
pred_vec = pred_vec ^ true_vec ^ 1 # "not xor" 1,1->1, 1,0->0, 0,1->0, 0,0->1
logger.info("Test - accuracy: %.4f, f1: %.4f" % (accuracy_score(true_vec, pred_vec),
f1_score(true_vec, pred_vec)))
config.batch_size = pre_batch_size
model.train()