Skip to content

Latest commit

 

History

History
42 lines (29 loc) · 1.58 KB

README.md

File metadata and controls

42 lines (29 loc) · 1.58 KB

Fibro-CoSANet: Pulmonary Fibrosis Prognosis Prediction using a Convolutional Self Attention Network

Installation

  1. git clone https://github.com/zabir-nabil/osic-pulmonary-fibrosis-progression.git
  2. cd osic-pulmonary-fibrosis-progression
  3. Install Anaconda Anaconda
  4. conda create -n pulmo python==3.7.5
  5. conda activate pulmo
  6. conda install -c intel mkl_fft (opt.)
  7. conda install -c intel mkl_random (opt.)
  8. conda install -c anaconda mkl-service (opt.)
  9. pip install -r requirements.txt

Download Dataset

  1. Download the kaggle.json from Kaggle account. Kaggle authentication
  2. Keep the kaggle.json file inside data_download folder.
  3. sudo mkdir /root/.kaggle
  4. sudo cp kaggle.json /root/.kaggle/
  5. sudo apt install unzip if not installed already
  • cd data_download; python dataset_download.py; mv osic-pulmonary-fibrosis-progression.zip ../../; unzip ../../osic-pulmonary-fibrosis-progression.zip -d ../../; cd ../; python train_slopes.py

Training

  1. Set the training hyperparameters in config.py
  2. Slope Prediction
    • To train slopes model run python train_slopes.py
    • trained model weights and results will be saved inside hyp.results_dir
  3. Quantile Regression
    • To train qreg model run python train_qreg.py
    • trained model weights and results will be saved inside hyp.results_dir

Arxiv pre-print

https://arxiv.org/abs/2104.05889