-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_train.py
746 lines (646 loc) · 37.5 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
import torch
import torch.nn as nn
import argparse
import os
import json
import shutil
import numpy as np
from model import *
from dataset import *
from torch.utils.data import DataLoader
import torch.utils.data.sampler as torch_sampler
from evaluate_tDCF_asvspoof19 import compute_eer_and_tdcf
from loss import *
from collections import defaultdict
from tqdm import tqdm, trange
import random
from utils import *
import eval_metrics as em
from ECAPA_TDNN import *
torch.set_default_tensor_type(torch.FloatTensor)
def initParams():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--seed', type=int, help="random number seed", default=688)
# Data folder prepare
parser.add_argument("-a", "--access_type", type=str, help="LA or PA", default='LA')
parser.add_argument("-d", "--path_to_database", type=str, help="dataset path", default='/data/neil/DS_10283_3336/')
parser.add_argument("-f", "--path_to_features", type=str, help="features path",
default='/data2/neil/ASVspoof2019LA/')
parser.add_argument("-o", "--out_fold", type=str, help="output folder", required=True, default='./models/try/')
parser.add_argument("--ratio", type=float, default=0.5,
help="ASVspoof ratio in a training batch, the other should be augmented")
# Dataset prepare
parser.add_argument("--feat", type=str, help="which feature to use", default='LFCC',
choices=["CQCC", "LFCC"])
parser.add_argument("--feat_len", type=int, help="features length", default=750)
parser.add_argument('--pad_chop', type=str2bool, nargs='?', const=True, default=True, help="whether pad_chop in the dataset")
parser.add_argument('--padding', type=str, default='repeat', choices=['zero', 'repeat', 'silence'],
help="how to pad short utterance")
parser.add_argument("--enc_dim", type=int, help="encoding dimension", default=256)
parser.add_argument('-m', '--model', help='Model arch', default='lcnn',
choices=['cnn', 'resnet', 'lcnn', 'res2net', 'ecapa'])
# Training hyperparameters
parser.add_argument('--num_epochs', type=int, default=200, help="Number of epochs for training")
parser.add_argument('--batch_size', type=int, default=64, help="Mini batch size for training")
parser.add_argument('--lr', type=float, default=0.0005, help="learning rate")
parser.add_argument('--lr_decay', type=float, default=0.5, help="decay learning rate")
parser.add_argument('--interval', type=int, default=30, help="interval to decay lr")
parser.add_argument('--beta_1', type=float, default=0.9, help="bata_1 for Adam")
parser.add_argument('--beta_2', type=float, default=0.999, help="beta_2 for Adam")
parser.add_argument('--eps', type=float, default=1e-8, help="epsilon for Adam")
parser.add_argument("--gpu", type=str, help="GPU index", default="1")
parser.add_argument('--num_workers', type=int, default=0, help="number of workers")
parser.add_argument('--base_loss', type=str, default="ce", choices=["ce", "bce"], help="use which loss for basic training")
parser.add_argument('--add_loss', type=str, default=None,
choices=[None, 'isolate', 'ang_iso', 'p2sgrad'], help="add other loss for one-class training")
parser.add_argument('--weight_loss', type=float, default=1, help="weight for other loss")
parser.add_argument('--r_real', type=float, default=0.9, help="r_real for isolate loss")
parser.add_argument('--r_fake', type=float, default=0.2, help="r_fake for isolate loss")
parser.add_argument('--alpha', type=float, default=20, help="scale factor for angular isolate loss")
parser.add_argument('--num_centers', type=int, default=3, help="num of centers for multi isolate loss")
parser.add_argument('--visualize', action='store_true', help="feature visualization")
parser.add_argument('--test_only', action='store_true', help="test the trained model in case the test crash sometimes or another test method")
parser.add_argument('--continue_training', action='store_true', help="continue training with trained model")
parser.add_argument('--ADV_AUG', type=str2bool, nargs='?', const=True, default=False,
help="whether to use adversarial augmentation in training")
parser.add_argument('--LA_aug', type=str2bool, nargs='?', const=True, default=False,
help="whether to use LA_augmentation in training")
parser.add_argument('--DF_aug', type=str2bool, nargs='?', const=True, default=False,
help="whether to use DF_augmentation in training")
parser.add_argument('--LAPA_aug', type=str2bool, nargs='?', const=True, default=False,
help="whether to use LAPA_augmentation in training")
parser.add_argument('--DFPA_aug', type=str2bool, nargs='?', const=True, default=False,
help="whether to use DFPA_augmentation in training")
parser.add_argument('--lambda_', type=float, default=0.05, help="lambda for gradient reversal layer")
parser.add_argument('--lr_d', type=float, default=0.0001, help="learning rate")
parser.add_argument('--pre_train', action='store_true', help="whether to pretrain the model")
parser.add_argument('--test_on_eval', action='store_true',
help="whether to run EER on the evaluation set")
args = parser.parse_args()
# Check ratio
assert (args.ratio > 0) and (args.ratio <= 1)
# Change this to specify GPU
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# Set seeds
setup_seed(args.seed)
if args.test_only or args.continue_training:
pass
else:
# Path for output data
if not os.path.exists(args.out_fold):
os.makedirs(args.out_fold)
else:
shutil.rmtree(args.out_fold)
os.mkdir(args.out_fold)
# Folder for intermediate results
if not os.path.exists(os.path.join(args.out_fold, 'checkpoint')):
os.makedirs(os.path.join(args.out_fold, 'checkpoint'))
else:
shutil.rmtree(os.path.join(args.out_fold, 'checkpoint'))
os.mkdir(os.path.join(args.out_fold, 'checkpoint'))
# Path for input data
# assert os.path.exists(args.path_to_database)
assert os.path.exists(args.path_to_features)
# Save training arguments
with open(os.path.join(args.out_fold, 'args.json'), 'w') as file:
file.write(json.dumps(vars(args), sort_keys=True, separators=('\n', ':')))
with open(os.path.join(args.out_fold, 'train_loss.log'), 'w') as file:
file.write("Start recording training loss ...\n")
with open(os.path.join(args.out_fold, 'dev_loss.log'), 'w') as file:
file.write("Start recording validation loss ...\n")
with open(os.path.join(args.out_fold, 'test_loss.log'), 'w') as file:
file.write("Start recording test loss ...\n")
args.cuda = torch.cuda.is_available()
print('Cuda device available: ', args.cuda)
args.device = torch.device("cuda" if args.cuda else "cpu")
return args
def adjust_learning_rate(args, lr, optimizer, epoch_num):
lr = lr * (args.lr_decay ** (epoch_num // args.interval))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def shuffle(feat, tags, labels):
shuffle_index = torch.randperm(labels.shape[0])
feat = feat[shuffle_index]
tags = tags[shuffle_index]
labels = labels[shuffle_index]
# this_len = this_len[shuffle_index]
return feat, tags, labels
def train(args):
torch.set_default_tensor_type(torch.FloatTensor)
# initialize model
if args.model == 'resnet':
node_dict = {"LFCC": 3}
feat_model = ResNet(node_dict[args.feat], args.enc_dim, resnet_type='18', nclasses=1 if args.base_loss == "bce" else 2).to(args.device)
elif args.model == 'lcnn':
feat_model = LCNN(60, args.enc_dim, nclasses=2).to(args.device)
elif args.model == 'ecapa':
node_dict = {"LFCC": 60}
feat_model = Res2Net2(Bottle2neck, C=512, model_scale=8, nOut=2, n_mels=node_dict[args.feat]).to(args.device)
elif args.model == 'res2net':
feat_model = Res2Net(SEBottle2neck, [3, 4, 6, 3], baseWidth=26, scale=4, pretrained=False, num_classes=2).to(args.device)
if args.continue_training:
feat_model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_feat_model.pt')).to(args.device)
# feat_model = nn.DataParallel(feat_model, list(range(torch.cuda.device_count()))) # for multiple GPUs
feat_optimizer = torch.optim.Adam(feat_model.parameters(), lr=args.lr,
betas=(args.beta_1, args.beta_2), eps=args.eps, weight_decay=0.0005)
training_set = ASVspoof2019(args.access_type, args.path_to_features, 'train',
args.feat, feat_len=args.feat_len, pad_chop=args.pad_chop, padding=args.padding)
validation_set = ASVspoof2019(args.access_type, args.path_to_features, 'dev',
args.feat, feat_len=args.feat_len, pad_chop=args.pad_chop, padding=args.padding)
if args.LA_aug:
training_set = ASVspoof2021LA_aug(part="train",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
validation_set = ASVspoof2021LA_aug(part="dev",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
if args.DF_aug:
training_set = ASVspoof2021DF_aug(part="train",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
validation_set = ASVspoof2021DF_aug(part="dev",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
if args.LAPA_aug:
training_set = ASVspoof2021LAPA_aug(part="train",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
validation_set = ASVspoof2021LAPA_aug(part="dev",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
if args.DFPA_aug:
training_set = ASVspoof2021DFPA_aug(part="train",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
validation_set = ASVspoof2021DFPA_aug(part="dev",
feature=args.feat, feat_len=args.feat_len,
pad_chop=args.pad_chop, padding=args.padding)
if args.ADV_AUG:
assert (args.LA_aug or args.DF_aug or args.LAPA_aug or args.DFPA_aug)
if args.LA_aug or args.DF_aug:
classifier = ChannelClassifier(args.enc_dim, len(training_set.channel), args.lambda_).to(args.device)
classifier_optimizer = torch.optim.Adam(classifier.parameters(), lr=args.lr_d,
betas=(args.beta_1, args.beta_2), eps=args.eps, weight_decay=0.0005)
else:
classifier1 = ChannelClassifier(args.enc_dim, len(training_set.channel), args.lambda_).to(args.device)
classifier1_optimizer = torch.optim.Adam(classifier1.parameters(), lr=args.lr_d,
betas=(args.beta_1, args.beta_2), eps=args.eps, weight_decay=0.0005)
classifier2 = ChannelClassifier(args.enc_dim, len(training_set.devices), args.lambda_).to(args.device)
classifier2_optimizer = torch.optim.Adam(classifier2.parameters(), lr=args.lr_d,
betas=(args.beta_1, args.beta_2), eps=args.eps,
weight_decay=0.0005)
trainOriDataLoader = DataLoader(training_set, batch_size=int(args.batch_size * args.ratio),
shuffle=False, num_workers=args.num_workers,
sampler=torch_sampler.SubsetRandomSampler(range(25380)))
trainAugDataLoader = DataLoader(training_set, batch_size=args.batch_size - int(args.batch_size * args.ratio),
shuffle=False, num_workers=args.num_workers,
sampler=torch_sampler.SubsetRandomSampler(range(25380, len(training_set))))
trainOri_flow = iter(trainOriDataLoader)
trainAug_flow = iter(trainAugDataLoader)
valOriDataLoader = DataLoader(validation_set, batch_size=int(args.batch_size * args.ratio),
shuffle=False, num_workers=args.num_workers,
sampler=torch_sampler.SubsetRandomSampler(range(24844)))
valAugDataLoader = DataLoader(validation_set, batch_size=args.batch_size - int(args.batch_size * args.ratio),
shuffle=False, num_workers=args.num_workers,
sampler=torch_sampler.SubsetRandomSampler(range(24844, len(validation_set))))
valOri_flow = iter(valOriDataLoader)
valAug_flow = iter(valAugDataLoader)
test_set = ASVspoof2019(args.access_type, args.path_to_features, "eval", args.feat, feat_len=args.feat_len, pad_chop=args.pad_chop, padding=args.padding)
testDataLoader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=test_set.collate_fn)
feat, _, _, _, _ = training_set[23]
print("Feature shape", feat.shape)
if args.base_loss == "ce":
criterion = nn.CrossEntropyLoss()
else:
assert False
if args.add_loss == "isolate":
iso_loss = IsolateLoss(2, args.enc_dim, r_real=args.r_real, r_fake=args.r_fake).to(args.device)
if args.continue_training:
iso_loss = torch.load(os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt')).to(args.device)
iso_loss.train()
iso_optimzer = torch.optim.SGD(iso_loss.parameters(), lr=args.lr)
if args.add_loss == "iso_sq":
iso_loss = IsolateSquareLoss(2, args.enc_dim, r_real=args.r_real, r_fake=args.r_fake).to(args.device)
if args.continue_training:
iso_loss = torch.load(os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt')).to(args.device)
iso_loss.train()
iso_optimzer = torch.optim.SGD(iso_loss.parameters(), lr=args.lr)
if args.add_loss == "ang_iso":
ang_iso = AngularIsoLoss(args.enc_dim, r_real=args.r_real, r_fake=args.r_fake, alpha=args.alpha).to(args.device)
ang_iso.train()
ang_iso_optimzer = torch.optim.SGD(ang_iso.parameters(), lr=args.lr)
if args.add_loss == "p2sgrad":
p2sgrad_loss = P2SGradLoss(in_dim=args.enc_dim, out_dim=2, smooth=0.0).to(args.device)
p2sgrad_loss.train()
p2sgrad_optimzer = torch.optim.SGD(p2sgrad_loss.parameters(), lr=args.lr)
early_stop_cnt = 0
prev_loss = 1e8
add_size = args.batch_size - int(args.batch_size * args.ratio)
if args.add_loss is None:
monitor_loss = 'base_loss'
else:
monitor_loss = args.add_loss
for epoch_num in tqdm(range(args.num_epochs)):
genuine_feats, ip1_loader, tag_loader, idx_loader = [], [], [], []
feat_model.train()
trainlossDict = defaultdict(list)
devlossDict = defaultdict(list)
testlossDict = defaultdict(list)
adjust_learning_rate(args, args.lr, feat_optimizer, epoch_num)
if args.add_loss == "isolate":
adjust_learning_rate(args, args.lr, iso_optimzer, epoch_num)
if args.add_loss == "ang_iso":
adjust_learning_rate(args, args.lr, ang_iso_optimzer, epoch_num)
if args.add_loss == "p2sgrad":
adjust_learning_rate(args, args.lr, p2sgrad_optimzer, epoch_num)
if args.ADV_AUG:
if args.LA_aug or args.DF_aug:
adjust_learning_rate(args, args.lr_d, classifier_optimizer, epoch_num)
else:
adjust_learning_rate(args, args.lr_d, classifier1_optimizer, epoch_num)
adjust_learning_rate(args, args.lr_d, classifier2_optimizer, epoch_num)
print('\nEpoch: %d ' % (epoch_num + 1))
correct_m, total_m, correct_c, total_c, correct_v, total_v = 0, 0, 0, 0, 0, 0
for i in trange(0, len(trainOriDataLoader), total=len(trainOriDataLoader), initial=0):
try:
featOri, audio_fnOri, tagsOri, labelsOri, channelsOri = next(trainOri_flow)
except StopIteration:
trainOri_flow = iter(trainOriDataLoader)
featOri, audio_fnOri, tagsOri, labelsOri, channelsOri = next(trainOri_flow)
try:
featAug, audio_fnAug, tagsAug, labelsAug, channelsAug = next(trainAug_flow)
except StopIteration:
trainAug_flow = iter(trainAugDataLoader)
featAug, audio_fnAug, tagsAug, labelsAug, channelsAug = next(trainAug_flow)
feat = torch.cat((featOri, featAug), 0)
tags = torch.cat((tagsOri, tagsAug), 0)
labels = torch.cat((labelsOri, labelsAug), 0)
# if not args.LAPA_aug:
channels = torch.cat((channelsOri, channelsAug), 0)
# else:
# channels = torch.cat((np.array(channelsOri), np.array(channelsAug)), 0)
# count = 0
# for channel in list(channels):
# if channel == "no_channel":
# count += 1
# print(count / 64)
# if i > 2: break
feat = feat.transpose(2,3).to(args.device)
tags = tags.to(args.device)
labels = labels.to(args.device)
# this_len = this_len.to(args.device)
if args.ratio < 1:
feat, tags, labels = shuffle(feat, tags, labels)
if args.model == 'ecapa':
feat = torch.squeeze(feat)
feats, feat_outputs = feat_model(feat)
if args.base_loss == "bce":
feat_loss = criterion(feat_outputs, labels.unsqueeze(1).float())
else:
feat_loss = criterion(feat_outputs, labels)
trainlossDict['base_loss'].append(feat_loss.item())
if args.add_loss == None:
feat_optimizer.zero_grad()
feat_loss.backward()
feat_optimizer.step()
if args.add_loss in ["isolate", "iso_sq"]:
isoloss = iso_loss(feats, labels)
feat_loss = isoloss * args.weight_loss
feat_optimizer.zero_grad()
iso_optimzer.zero_grad()
trainlossDict[args.add_loss].append(isoloss.item())
feat_loss.backward()
feat_optimizer.step()
iso_optimzer.step()
if args.add_loss == "ang_iso":
ang_isoloss, _ = ang_iso(feats, labels)
feat_loss = ang_isoloss * args.weight_loss
if epoch_num > 0 and args.ADV_AUG:
if args.LA_aug or args.DF_aug:
channels = channels.to(args.device)
# feats = grl(feats)
classifier_out = classifier(feats)
_, predicted = torch.max(classifier_out.data, 1)
total_m += channels.size(0)
correct_m += (predicted == channels).sum().item()
device_loss = criterion(classifier_out, channels)
# print(feat_loss.item())
feat_loss += device_loss
# print(device_loss.item())
trainlossDict["adv_loss"].append(device_loss.item())
else:
channels = channels.to(args.device)
codec = channels[:, 0]
devic = channels[:, 1]
classifier1_out = classifier1(feats)
classifier2_out = classifier2(feats)
_, predicted = torch.max(classifier1_out.data, 1)
total_m += channels.size(0)
correct_m += (predicted == codec).sum().item()
codec_loss = criterion(classifier1_out, codec)
devic_loss = criterion(classifier2_out, devic)
advaug_loss = codec_loss + devic_loss
feat_loss += advaug_loss
trainlossDict["adv_loss"].append(advaug_loss.item())
feat_optimizer.zero_grad()
ang_iso_optimzer.zero_grad()
trainlossDict[args.add_loss].append(ang_isoloss.item())
feat_loss.backward()
feat_optimizer.step()
ang_iso_optimzer.step()
if args.add_loss == "p2sgrad":
feat_loss, _ = p2sgrad_loss(feats, labels)
trainlossDict[args.add_loss].append(feat_loss.item())
feat_optimizer.zero_grad()
p2sgrad_optimzer.zero_grad()
feat_loss.backward()
feat_optimizer.step()
p2sgrad_optimzer.step()
if args.ADV_AUG:
if args.LA_aug or args.DF_aug:
channels = channels.to(args.device)
feats, _ = feat_model(feat)
feats = feats.detach()
# feats = grl(feats)
classifier_out = classifier(feats)
_, predicted = torch.max(classifier_out.data, 1)
total_c += channels.size(0)
correct_c += (predicted == channels).sum().item()
device_loss_c = criterion(classifier_out, channels)
classifier_optimizer.zero_grad()
device_loss_c.backward()
classifier_optimizer.step()
else:
channels = channels.to(args.device)
codec = channels[:, 0]
devic = channels[:, 1]
feats, _ = feat_model(feat)
feats = feats.detach()
# feats = grl(feats)
classifier1_out = classifier1(feats)
classifier2_out = classifier2(feats)
_, predicted = torch.max(classifier1_out.data, 1)
total_c += channels.size(0)
correct_c += (predicted == codec).sum().item()
codec_loss_c = criterion(classifier1_out, codec)
classifier1_optimizer.zero_grad()
codec_loss_c.backward()
classifier1_optimizer.step()
devic_loss_c = criterion(classifier2_out, devic)
classifier2_optimizer.zero_grad()
devic_loss_c.backward()
classifier2_optimizer.step()
# genuine_feats.append(feats[labels==0])
ip1_loader.append(feats)
idx_loader.append((labels))
tag_loader.append((tags))
# if epoch_num > 0:
# print(100 * correct_m / total_m)
# print(100 * correct_c / total_c)
# desc_str = ''
# for key in sorted(trainlossDict.keys()):
# desc_str += key + ':%.5f' % (np.nanmean(trainlossDict[key])) + ', '
# t.set_description(desc_str)
# print(desc_str)
if epoch_num > 0 and args.ADV_AUG:
with open(os.path.join(args.out_fold, "train_loss.log"), "a") as log:
log.write(str(epoch_num) + "\t" + str(i) + "\t" +
str(trainlossDict["adv_loss"][-1]) + "\t" +
str(100 * correct_m / total_m) + "\t" +
str(100 * correct_c / total_c) + "\t" +
str(trainlossDict[monitor_loss][-1]) + "\n")
else:
with open(os.path.join(args.out_fold, "train_loss.log"), "a") as log:
log.write(str(epoch_num) + "\t" + str(i) + "\t" +
str(trainlossDict[monitor_loss][-1]) + "\n")
# print(len(what))
# print(len(list(set(what))))
# assert len(what) == len(list(set(what)))
# Val the model
# eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
feat_model.eval()
with torch.no_grad():
ip1_loader, tag_loader, idx_loader, score_loader = [], [], [], []
# with trange(2) as v:
# with trange(len(valDataLoader)) as v:
# for i in v:
for i in trange(0, len(valOriDataLoader), total=len(valOriDataLoader), initial=0):
try:
featOri, audio_fnOri, tagsOri, labelsOri, channelsOri = next(valOri_flow)
except StopIteration:
valOri_flow = iter(valOriDataLoader)
featOri, audio_fnOri, tagsOri, labelsOri, channelsOri = next(valOri_flow)
try:
featAug, audio_fnAug, tagsAug, labelsAug, channelsAug = next(valAug_flow)
except StopIteration:
valAug_flow = iter(valAugDataLoader)
featAug, audio_fnAug, tagsAug, labelsAug, channelsAug = next(valAug_flow)
feat = torch.cat((featOri, featAug), 0)
tags = torch.cat((tagsOri, tagsAug), 0)
labels = torch.cat((labelsOri, labelsAug), 0)
channels = torch.cat((channelsOri, channelsAug), 0)
# if i > 2: break
feat = feat.transpose(2,3).to(args.device)
tags = tags.to(args.device)
labels = labels.to(args.device)
feat, tags, labels = shuffle(feat, tags, labels)
if args.model == 'ecapa':
feat = torch.squeeze(feat)
feats, feat_outputs = feat_model(feat)
if args.base_loss == "bce":
feat_loss = criterion(feat_outputs, labels.unsqueeze(1).float())
score = feat_outputs[:, 0]
else:
feat_loss = criterion(feat_outputs, labels)
score = F.softmax(feat_outputs, dim=1)[:, 0]
ip1_loader.append(feats)
idx_loader.append((labels))
tag_loader.append((tags))
if args.add_loss in [None]:
devlossDict["base_loss"].append(feat_loss.item())
elif args.add_loss in ["isolate", "iso_sq"]:
isoloss = iso_loss(feats, labels)
score = torch.norm(feats - iso_loss.center, p=2, dim=1)
devlossDict[args.add_loss].append(isoloss.item())
elif args.add_loss == "ang_iso":
ang_isoloss, score = ang_iso(feats, labels)
devlossDict[args.add_loss].append(ang_isoloss.item())
if epoch_num > 0 and args.ADV_AUG:
if args.LA_aug or args.DF_aug:
channels = channels.to(args.device)
# feats = grl(feats)
classifier_out = classifier(feats)
_, predicted = torch.max(classifier_out.data, 1)
total_v += channels.size(0)
correct_v += (predicted == channels).sum().item()
device_loss = criterion(classifier_out, channels)
# print(feat_loss.item())
feat_loss += device_loss
# print(device_loss.item())
devlossDict["adv_loss"].append(device_loss.item())
else:
channels = channels.to(args.device)
codec = channels[:, 0]
devic = channels[:, 1]
classifier1_out = classifier1(feats)
classifier2_out = classifier2(feats)
_, predicted = torch.max(classifier1_out.data, 1)
total_v += channels.size(0)
correct_v += (predicted == codec).sum().item()
codec_loss = criterion(classifier1_out, codec)
devic_loss = criterion(classifier2_out, devic)
advaug_loss = codec_loss + devic_loss
feat_loss += advaug_loss
devlossDict["adv_loss"].append(advaug_loss.item())
elif args.add_loss == 'p2sgrad':
feat_loss, score = p2sgrad_loss(feats, labels)
devlossDict[args.add_loss].append(feat_loss.item())
score_loader.append(score)
# desc_str = ''
# for key in sorted(devlossDict.keys()):
# desc_str += key + ':%.5f' % (np.nanmean(devlossDict[key])) + ', '
# # v.set_description(desc_str)
# print(desc_str)
# scores = torch.cat(score_loader, 0).data.cpu().numpy()
# labels = torch.cat(idx_loader, 0).data.cpu().numpy()
# eer = em.compute_eer(scores[labels == 0], scores[labels == 1])[0]
# other_eer = em.compute_eer(-scores[labels == 0], -scores[labels == 1])[0]
# eer = min(eer, other_eer)
# if epoch_num > 0 and args.ADV_AUG:
# with open(os.path.join(args.out_fold, "dev_loss.log"), "a") as log:
# log.write(str(epoch_num) + "\t"+ "\t" +
# str(np.nanmean(devlossDict["adv_loss"])) + "\t" +
# str(100 * correct_v / total_v) + "\t" +
# str(np.nanmean(devlossDict[monitor_loss])) + "\t" +
# str(eer) + "\n")
# else:
# with open(os.path.join(args.out_fold, "dev_loss.log"), "a") as log:
# log.write(str(epoch_num) + "\t" +
# str(np.nanmean(devlossDict[monitor_loss])) + "\t" +
# str(eer) +"\n")
# print("Val EER: {}".format(eer))
if args.visualize and ((epoch_num+1) % 3 == 1):
feat = torch.cat(ip1_loader, 0)
tags = torch.cat(tag_loader, 0)
if args.add_loss == "isolate":
centers = iso_loss.center
elif args.add_loss == "ang_iso":
centers = ang_iso.center
else:
centers = torch.mean(feat[labels==0], dim=0, keepdim=True)
visualize(args, feat.data.cpu().numpy(), tags.data.cpu().numpy(), labels.data.cpu().numpy(), centers.data.cpu().numpy(),
epoch_num + 1, "Dev")
if args.test_on_eval:
with torch.no_grad():
ip1_loader, tag_loader, idx_loader, score_loader = [], [], [], []
for i, (feat, audio_fn, tags, labels) in enumerate(tqdm(testDataLoader)):
# if i > 2: break
feat = feat.transpose(2,3).to(args.device)
tags = tags.to(args.device)
labels = labels.to(args.device)
if args.model == 'ecapa':
feat = torch.squeeze(feat)
feats, feat_outputs = feat_model(feat)
if args.base_loss == "bce":
feat_loss = criterion(feat_outputs, labels.unsqueeze(1).float())
score = feat_outputs[:, 0]
else:
feat_loss = criterion(feat_outputs, labels)
score = F.softmax(feat_outputs, dim=1)[:, 0]
ip1_loader.append(feats)
idx_loader.append((labels))
tag_loader.append((tags))
if args.add_loss in [None]:
testlossDict["base_loss"].append(feat_loss.item())
elif args.add_loss in ["isolate", "iso_sq"]:
isoloss = iso_loss(feats, labels)
score = torch.norm(feats - iso_loss.center, p=2, dim=1)
testlossDict[args.add_loss].append(isoloss.item())
elif args.add_loss == "ang_iso":
ang_isoloss, score = ang_iso(feats, labels)
testlossDict[args.add_loss].append(ang_isoloss.item())
elif args.add_loss == 'p2sgrad':
p2s_loss, score = p2sgrad_loss(feats, labels)
testlossDict[args.add_loss].append(p2s_loss.item())
score_loader.append(score)
# desc_str = ''
# for key in sorted(testlossDict.keys()):
# desc_str += key + ':%.5f' % (np.nanmean(testlossDict[key])) + ', '
# # v.set_description(desc_str)
# print(desc_str)
scores = torch.cat(score_loader, 0).data.cpu().numpy()
labels = torch.cat(idx_loader, 0).data.cpu().numpy()
eer = em.compute_eer(scores[labels == 0], scores[labels == 1])[0]
other_eer = em.compute_eer(-scores[labels == 0], -scores[labels == 1])[0]
eer = min(eer, other_eer)
with open(os.path.join(args.out_fold, "test_loss.log"), "a") as log:
log.write(str(epoch_num) + "\t" + str(np.nanmean(testlossDict[monitor_loss])) + "\t" + str(eer) + "\n")
print("Test EER: {}".format(eer))
valLoss = np.nanmean(devlossDict[monitor_loss])
# if args.add_loss == "isolate":
# print("isolate center: ", iso_loss.center.data)
if (epoch_num + 1) % 1 == 0:
torch.save(feat_model, os.path.join(args.out_fold, 'checkpoint',
'anti-spoofing_feat_model_%d.pt' % (epoch_num + 1)))
if args.add_loss in ["isolate", "iso_sq"]:
loss_model = iso_loss
torch.save(loss_model, os.path.join(args.out_fold, 'checkpoint',
'anti-spoofing_loss_model_%d.pt' % (epoch_num + 1)))
elif args.add_loss == "ang_iso":
loss_model = ang_iso
torch.save(loss_model, os.path.join(args.out_fold, 'checkpoint',
'anti-spoofing_loss_model_%d.pt' % (epoch_num + 1)))
elif args.add_loss == "p2sgrad":
loss_model = p2sgrad_loss
torch.save(p2sgrad_loss, os.path.join(args.out_fold, 'checkpoint',
'anti-spoofing_loss_model_%d.pt' % (epoch_num + 1)))
else:
loss_model = None
if valLoss < prev_loss:
# Save the model checkpoint
torch.save(feat_model, os.path.join(args.out_fold, 'anti-spoofing_feat_model.pt'))
if args.add_loss in ["isolate", "iso_sq"]:
loss_model = iso_loss
torch.save(loss_model, os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))
elif args.add_loss == "ang_iso":
loss_model = ang_iso
torch.save(loss_model, os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))
elif args.add_loss == "p2sgrad":
loss_model = p2sgrad_loss
torch.save(p2sgrad_loss, os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))
else:
loss_model = None
prev_loss = valLoss
early_stop_cnt = 0
else:
early_stop_cnt += 1
if early_stop_cnt == 500:
with open(os.path.join(args.out_fold, 'args.json'), 'a') as res_file:
res_file.write('\nTrained Epochs: %d\n' % (epoch_num - 499))
break
# if early_stop_cnt == 1:
# torch.save(feat_model, os.path.join(args.out_fold, 'anti-spoofing_feat_model.pt')
# print('Dev Accuracy of the model on the val features: {} % '.format(100 * feat_correct / total))
return feat_model, loss_model
if __name__ == "__main__":
args = initParams()
if not args.test_only:
_, _ = train(args)
# model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_feat_model.pt'))
# if args.add_loss is None:
# loss_model = None
# else:
# loss_model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))
# # TReer_cm, TRmin_tDCF = test(args, model, loss_model, "train")
# # VAeer_cm, VAmin_tDCF = test(args, model, loss_model, "dev")
# TEeer_cm, TEmin_tDCF = test(args, model, loss_model)
# with open(os.path.join(args.out_fold, 'args.json'), 'a') as res_file:
# # res_file.write('\nTrain EER: %8.5f min-tDCF: %8.5f\n' % (TReer_cm, TRmin_tDCF))
# # res_file.write('\nVal EER: %8.5f min-tDCF: %8.5f\n' % (VAeer_cm, VAmin_tDCF))
# res_file.write('\nTest EER: %8.5f min-tDCF: %8.5f\n' % (TEeer_cm, TEmin_tDCF))
# plot_loss(args)
# # Test a checkpoint model
# args = initParams()
# model = torch.load(os.path.join(args.out_fold, 'checkpoint', 'anti-spoofing_feat_model_19.pt'))
# loss_model = torch.load(os.path.join(args.out_fold, 'checkpoint', 'anti-spoofing_loss_model_19.pt'))
# VAeer_cm, VAmin_tDCF = test(args, model, loss_model, "dev")