-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
83 lines (77 loc) · 2.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from BuggySimulator import *
import numpy as np
#from controller_slow import *
from controller_fast import *
from util import *
import matplotlib.pyplot as plt
from Evaluation import *
# get the trajectory
traj = get_trajectory('buggyTrace.csv')
# initial the Buggy
vehicle = initail(traj, 0)
n = 6000
X = []
Y = []
delta = []
xd = []
yd = []
phi = []
phid = []
deltad = []
F = []
minDist =[]
'''
your code starts here
'''
# preprocess the trajectory
passMiddlePoint = False
nearGoal = False
for i in range(n):
print(i)
command = controller(traj, vehicle.state)
vehicle.update(command = command)
# termination check
disError,nearIdx = closest_node(vehicle.state.X, vehicle.state.Y, traj)
stepToMiddle = nearIdx - len(traj)/2.0
if abs(stepToMiddle) < 100.0:
passMiddlePoint = True
print('middle point passed')
nearGoal = nearIdx >= len(traj)-50
if nearGoal and passMiddlePoint:
print('destination reached!')
break
# record states
X.append(vehicle.state.X)
Y.append(vehicle.state.Y)
delta.append(vehicle.state.delta)
xd.append(vehicle.state.xd)
yd.append(vehicle.state.yd)
phid.append(vehicle.state.phid)
phi.append(vehicle.state.phi)
deltad.append(command.deltad)
F.append(command.F)
minDist.append(disError)
# to save the current states into a matrix
currentState = vehicle.state
cur_state_np = np.array([
[currentState.xd,
currentState.yd,
currentState.phid,
currentState.delta,
currentState.X,
currentState.Y,
currentState.phi]])
if i == 0:
state_saved = cur_state_np.reshape((1, 7))
else:
state_saved = np.concatenate((state_saved, cur_state_np.reshape((1, 7))), axis=0)
showResult(traj,X,Y,delta,xd,yd,F,phi,phid,minDist)
np.save('Actual_trajectory', state_saved)
evaluation(minDist, traj, X, Y,4)
plt.title('Trajectory of the Car')
plt.plot(traj[:,0], traj[:,1], 'b', label = "reference trajectory")
plt.plot(X[:],Y[:],'r', label = "actual trajectory")
plt.xlabel("X-position (m)")
plt.ylabel("Y-position (m)")
plt.legend()
plt.show()