-
Notifications
You must be signed in to change notification settings - Fork 9
/
controller_slow.py
148 lines (122 loc) · 5.09 KB
/
controller_slow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
from scipy import signal
import BuggySimulator
import scipy
from util import *
def controller(traj, currentState):
# controller
''' parameters '''
lr = 1.7
lf = 1.1
Ca = 15000.0
Iz = 3344.0
f = 0.01
m = 2000.0
g = 10
dt = 0.05
''' filter the track '''
if 'smooth_traj_x' not in controller.__dict__:
x = traj[:,0]
y = traj[:,1]
sig = 5
controller.smooth_traj_x = scipy.ndimage.gaussian_filter1d(x,sigma = sig,order = 0, mode = 'reflect')
controller.smooth_traj_y = scipy.ndimage.gaussian_filter1d(y,sigma = sig,order = 0, mode = 'reflect')
''' calculate the derivative of track '''
if 'dx' not in controller.__dict__:
x = traj[:,0]
y = traj[:,1]
sig = 5
controller.dx = scipy.ndimage.gaussian_filter1d(x,sigma = sig,order = 1, mode = 'reflect')
controller.dy = scipy.ndimage.gaussian_filter1d(y,sigma = sig,order = 1, mode = 'reflect')
''' calculate the curvature of track '''
if 'curvature' not in controller.__dict__:
x = traj[:,0]
y = traj[:,1]
sig = 5
dxdt = scipy.ndimage.gaussian_filter1d(x,sigma = sig,order = 1, mode = 'wrap')
d2xdt2 = scipy.ndimage.gaussian_filter1d(dxdt,sigma = sig,order = 2, mode = 'wrap')
dydt = scipy.ndimage.gaussian_filter1d(y,sigma = sig,order = 1, mode = 'wrap')
d2ydt2 = scipy.ndimage.gaussian_filter1d(dydt,sigma= sig,order = 2, mode = 'wrap')
controller.curvature = np.abs(dxdt*d2ydt2-dydt*d2xdt2)/np.power(dxdt**2+dydt**2,3.0/2.0)
''' vehicle model '''
Vx = currentState.xd
if Vx < 0.1:
Vx = 0.1
A = np.array([[0,1,0,0],[0,-4*Ca/m/Vx,4*Ca/m,2*Ca*(lr-lf)/m/Vx],
[0,0,0,1],[0,-2*Ca*(lf-lr)/Iz/Vx,2*Ca*(lf-lr)/Iz,-2*Ca*(lf*lf+lr*lr)/Iz/Vx]])
B1 = np.array([[0],[2*Ca/m],[0],[2*Ca*lf/Iz]])
B2 = np.array([[0],[-2*Ca*(lf-lr)/m/Vx - Vx],[0],[-2*Ca*(lf*lf+lr*lr)/Iz/Vx]])
''' descretize the system '''
C = np.zeros((1,4))
D = 0
sys = scipy.signal.cont2discrete((A,B1,C,D),dt)
Ad = sys[0]
Bd = sys[1]
''' find points on the track closest to the car '''
min_dis_sq = 1000000000;
min_index = 0;
for j in range(traj.shape[0]):
distance_sq = (controller.smooth_traj_x[j] - currentState.X)**2 + (controller.smooth_traj_y[j] - currentState.Y)**2
if distance_sq <min_dis_sq:
min_dis_sq = distance_sq
min_index = j
min_dis = min_dis_sq**(1/2)
''' look at a target points 20m away from the current position '''
if min_index < 7300:
future = 180
else:
future = 155
target_index = min_index+future
if target_index >= traj.shape[0]:
target_index = -1
next_index = min_index+1
if next_index >= traj.shape[0]:
next_index =-1
''' find the current distance from car to the road '''
road_point1 = np.array([[controller.smooth_traj_x[min_index-1],controller.smooth_traj_y[min_index-1]]])
road_point2 = np.array([[controller.smooth_traj_x[next_index],controller.smooth_traj_y[next_index]]])
car = np.array([[currentState.X,currentState.Y]])
e1 = np.cross(road_point2-road_point1,car-road_point1)/np.linalg.norm(road_point2-road_point1)
''' find desired road angle '''
road_angle_x = controller.dx[target_index]
road_angle_y = controller.dy[target_index]
desired_road_angle = np.arctan2(road_angle_y,road_angle_x)
if (desired_road_angle <0):
desired_road_angle += 2*np.pi
''' find estimated angle error e2'''
actual_angle = currentState.phi
if(actual_angle < 0):
actual_angle += 2*np.pi
e2 = actual_angle - desired_road_angle
if (e2 > np.pi):
e2 -= 2*np.pi
elif (e2 < -np.pi):
e2 += 2*np.pi
''' find de1 '''
de1 = currentState.yd + Vx*(e2)
''' find de2 '''
desired_road_angle_rate = Vx*controller.curvature[target_index]
de2 = currentState.phid - desired_road_angle_rate
''' find longitudinal speed depending on road angle '''
max_speed = 8;
desired_speed = max_speed
# desired_speed = max_speed/3 + max_speed *2/3* np.cos(desired_road_angle_rate*dt);
''' use PID to control longitudinal speed '''
gain = 10000;
F = gain*(desired_speed - currentState.xd)
''' find k '''
# ================== infinite horizen LQR ========================
Q = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
R = 9
s = np.matrix(scipy.linalg.solve_discrete_are(Ad, Bd, Q, R))
k = scipy.linalg.inv(Bd.T.dot(s).dot(Bd) + R).dot(Bd.T.dot(s).dot(Ad))
# eigval,eigvec = scipy.linalg.eig(Ad-Bd.dot(k))
# print(np.abs(eigval))
k = -k
''' output u = kx '''
estimated_x = np.array([[e1],[de1],[e2],[de2]])
delta = k.dot(estimated_x)
delta_d = (delta - currentState.delta)/dt
delta_d = float(delta_d)
result = BuggySimulator.vehicle.command(F,delta_d)
return result