-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
130 lines (92 loc) · 4.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import sys
import time
import os
import argparse
import pdb
import glob
import torch
from avobject import avobject_model
from Data_generator import Datagen
from torch.utils.data import DataLoader
parser = argparse.ArgumentParser(description = "TrainArgs");
## Data loader
parser.add_argument('--batch_size', type=int, default=8, help='')
## Training details
parser.add_argument('--max_epoch', type=int, default=100, help='Maximum number of epochs');
parser.add_argument('--random_sample', type=bool, default=False, help='Sample audio from different video track');
parser.add_argument('--window_size', type=int, default=50, help='Sample window size');
parser.add_argument('--n_neg', type=int, default=20, help='negative sample number');
## Model definition
parser.add_argument('--nOut', type=int, default=1024, help='Embedding size in the last FC layer');
## Learning rates
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate');
parser.add_argument("--lr_decay", type=float, default=0.95, help='Learning rate decay every epoch');
## Load and save
parser.add_argument('--initial_model', type=str, default="", help='Initial model weights');
parser.add_argument('--save_path', type=str, default="./data/exp01", help='Path for model and logs');
## Training and test data
parser.add_argument('--train_list', type=str, default="LRS3/dev.txt", help='');
parser.add_argument('--verify_list', type=str, default="LRS3/test.txt", help='');
args = parser.parse_args();
# ==================== MAKE DIRECTORIES ====================
model_save_path = args.save_path+"/model"
result_save_path = args.save_path+"/result"
if not(os.path.exists(model_save_path)):
os.makedirs(model_save_path)
if not(os.path.exists(result_save_path)):
os.makedirs(result_save_path)
# ==================== LOAD MODEL ====================
s = avobject_model(learning_rate=args.lr, nOut=args.nOut, n_neg=args.n_neg)
# ==================== EVALUATE LIST ====================
it = 1;
scorefile = open(result_save_path+"/scores.txt", "a+");
for items in vars(args):
print(items, vars(args)[items]);
scorefile.write('%s %s\n'%(items, vars(args)[items]));
scorefile.flush()
# ==================== LOAD MODEL PARAMS ====================
modelfiles = glob.glob('%s/model0*.model'%model_save_path)
modelfiles.sort()
if len(modelfiles) >= 1:
s.loadParameters(modelfiles[-1]);
print("Model %s loaded from previous state!"%modelfiles[-1]);
it = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][5:]) + 1
elif(args.initial_model != ""):
s.loadParameters(args.initial_model);
print("Model %s loaded!"%args.initial_model);
for ii in range(0,it-1):
clr = s.updateLearningRate(args.lr_decay)
# ==================== LOAD DATA LIST ====================
print('Reading data ...')
train_dataset = Datagen(args.train_list, window_size=args.window_size,
random_sample=args.random_sample)
val_dataset = Datagen(args.verify_list,window_size=args.window_size,
random_sample=args.random_sample)
trainLoader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, pin_memory=True, drop_last=True)
valLoader = DataLoader(val_dataset, batch_size=args.batch_size, drop_last=True,
shuffle=True, pin_memory=True)
print('Reading done.')
# ==================== CHECK SPK ====================
clr = s.updateLearningRate(1)
while(1):
print(time.strftime("%Y-%m-%d %H:%M:%S"), it, "Start Iteration");
if not args.random_sample:
loss = s.train_network(trainLoader, evalmode=False);
valloss = s.train_network(valLoader, evalmode=True);
else:
loss = s.train_network_with_random(trainLoader, evalmode=False);
valloss = s.train_network_with_random(valLoader, evalmode=True);
print(time.strftime("%Y-%m-%d %H:%M:%S"), "%s: IT %d, LR %f,TLOSS %f, VLOSS %f\n"%(args.save_path, it, max(clr), loss, valloss));
scorefile.write("IT %d, LR %f, TLOSS %f, VLOSS %f\n"%(it, max(clr), loss, valloss));
scorefile.flush()
# ==================== SAVE MODEL ====================
clr = s.updateLearningRate(args.lr_decay)
print(time.strftime("%Y-%m-%d %H:%M:%S"), "Saving model %d" % it)
s.saveParameters(model_save_path+"/model%09d.model"%it);
if it >= args.max_epoch:
quit();
it+=1;
print("");
scorefile.close();