-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_synthetic_data_white_noise.py
192 lines (150 loc) · 5.82 KB
/
demo_synthetic_data_white_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
Demo Code for Fast PCA of Cryo-EM Images with white noise
"""
import utils_cwf_fast_batch as utils
import matplotlib.pyplot as plt
import mrcfile
from fle_2d_single import FLEBasis2D
from fast_cryo_pca import FastPCA
import logging
import os
import numpy as np
import scipy.linalg as LA
from aspire.source.simulation import Simulation
from aspire.volume import Volume
from aspire.operators import ScalarFilter
from aspire.operators import RadialCTFFilter
logger = logging.getLogger(__name__)
DATA_DIR = os.path.join(os.path.dirname(__file__), "./data/synthetic")
#######################################
## Parameters
#######################################
img_size = 64
sn_ratio = 1
logger.info(f"Signal to noise ratio is {sn_ratio}.")
batch_size = 1000
num_imgs = 10000
logger.info(f"image num {num_imgs}")
defocus_ct = 100 # the number of defocus groups
eps = 1e-3
# Number of defocus groups.
# Specify the CTF parameters
pixel_size = 5 * 65 / img_size # Pixel size of the images (in angstroms)
voltage = 200 # Voltage (in KV)
defocus_min = 1e4 # Minimum defocus value (in angstroms)
defocus_max = 3e4 # Maximum defocus value (in angstroms)
Cs = 2.0 # Spherical aberration
alpha = 0.1 # Amplitude contrast
# create CTF indices for each image, e.g. h_idx[0] returns the CTF index (0 to 99 if there are 100 CTFs) of the 0-th image
h_idx = utils.create_ordered_filter_idx(num_imgs, defocus_ct)
dtype = np.float32
logger.info(f"Simulation running in {dtype} precision.")
logger.info("Initialize simulation object and CTF filters.")
# Create filters. This is a list of CTFs. Each element corresponds to a UNIQUE CTF
h_ctf = [
RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=2.0, alpha=0.1)
for d in np.linspace(defocus_min, defocus_max, defocus_ct)
]
# Load the map file of a 70S Ribosome
logger.info(
f"Load 3D map and downsample 3D map to desired grids "
f"of {img_size} x {img_size} x {img_size}."
)
infile = mrcfile.open(os.path.join(DATA_DIR, "clean70SRibosome_vol_65p.mrc"))
# infile = mrcfile.open(os.path.join(DATA_DIR, "32743.mrc"))
# We prefer that our various arrays have consistent dtype.
vols = Volume(infile.data.astype(dtype) / np.max(infile.data))
vols = vols.downsample(img_size)
# vols = utils.mask_volume(vols, img_size, radius=img_size//2)
# Create a simulation object with specified filters and the downsampled 3D map
logger.info("Use downsampled map to creat simulation object.")
# this is for generating CTF-affected clean projections.
# We use this to determine the noise variance so that our simulated images have targeted SNR
source_ctf_clean = Simulation(
L=img_size,
n=num_imgs,
vols=vols,
offsets=0.0,
amplitudes=1.0,
unique_filters=h_ctf,
filter_indices=h_idx,
dtype=dtype,
)
# determine noise variance to create noisy images with certain SNR
noise_var = utils.get_noise_var_batch(source_ctf_clean, sn_ratio, batch_size)
# create noise filter
noise_filter = ScalarFilter(dim=2, value=noise_var)
# create simulation object for noisy images
source = Simulation(
L=img_size,
n=num_imgs,
vols=vols,
unique_filters=h_ctf,
filter_indices=h_idx,
offsets=0.0,
amplitudes=1.0,
dtype=dtype,
noise_filter=noise_filter,
)
# Fourier-Bessel expansion object
fle = FLEBasis2D(img_size, img_size, eps=eps)
# get clean sample mean and covariance
mean_clean = utils.get_clean_mean_batch(source, fle, batch_size)
covar_clean = utils.get_clean_covar_batch(source, fle, mean_clean, batch_size, dtype)
# options for covariance estimation
options = {
"whiten": False,
"single_pass": True, # whether estimate mean and covariance together (single pass over data), not separately
"noise_var": noise_var, # noise variance
"batch_size": batch_size,
"dtype": dtype
}
# create fast PCA object
fast_pca = FastPCA(source, fle, options)
# options for denoising
denoise_options = {
"denoise_df_id": [0, 30, 60, 90], # denoise 0-th, 30-th, 60-th, 90-th defocus groups
"denoise_df_num": [10, 15, 1, 240], # for each defocus group, respectively denoise the first 10, 15, 1, 100 images
# 240 exceed the number of images (100) per defocus group, so only 100 images will be returned
"return_denoise_error": True,
"store_images": True,
}
# code example 1: run in three steps, two passes over data for covariance estimation
# mean_est = fast_pca.estimate_mean()
# _, covar_est = fast_pca.estimate_mean_covar(mean_est=mean_est)
# results = fast_pca.denoise_images(mean_est=mean_est, covar_est=covar_est, denoise_options=denoise_options)
# code example 2: single pass over data (combine mean and covariance estimation)
# mean_est, covar_est = fast_pca.estimate_mean_covar()
# results = fast_pca.denoise_images(mean_est=mean_est, covar_est=covar_est, denoise_options=denoise_options)
# code example 3: Combine all steps in one-line of code (equivalent to example 2)
results = fast_pca.denoise_images(denoise_options=denoise_options)
err_denoise = results["mean_denoise_error"]
imgs_gt = results["clean_images"]
imgs_raw = results["raw_images"]
imgs_est = results["denoised_images"]
mean_est = fast_pca.mean_est
covar_est = fast_pca.covar_est
err_mean = LA.norm(mean_clean-mean_est)/LA.norm(mean_clean)
_, err_covar = utils.compute_covar_err(covar_est, covar_clean)
_, frc_vec = utils.compute_frc(imgs_est, imgs_gt, fle.n_angular, fle.eps, dtype=dtype)
print(f'error of mean estimation = {err_mean}')
print(f'error of covar estimation = {err_covar}')
print(f'error of image restoration = {err_denoise}')
im = 0
plt.subplot(2,2,1)
plt.imshow(imgs_gt[im], 'gray')
plt.title("clean")
plt.axis("off")
plt.subplot(2,2,2)
plt.imshow(imgs_raw[im], 'gray')
plt.title("noisy")
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(imgs_est[im], 'gray')
plt.title("denoised")
plt.axis("off")
plt.subplot(2,2,4)
plt.plot(frc_vec, '-r')
plt.title("FRC")
plt.show()
print("Done")