-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_1_to_1.py
361 lines (310 loc) · 13.5 KB
/
train_1_to_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import numpy as np
import pickle
from tqdm import tqdm
from collections import Counter
import os
import json
from datetime import datetime
import torch
from torch import nn, optim
import torch.nn.functional as F
from transformers import BertTokenizer, AutoTokenizer
import transformers
from transformers.optimization import AdamW
from sklearn import metrics # https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
from sklearn.exceptions import UndefinedMetricWarning
import warnings
warnings.filterwarnings("ignore", category=UndefinedMetricWarning)
from model_1_to_1 import (
ALBertSmallRNNnewLinearPunc,
ALBertSmallCNNLSTMPunc,
BertChineseRNNnewLinearPunc,
BertChineseLinearPunc,
RobertaChineseLinearPunc,
)
from data_1_to_1 import load_file, preprocess_data, create_data_loader
# CUDA = torch.cuda.is_available()
CUDA = True
def validate(model, criterion, epoch, epochs, iteration, iterations, data_loader_valid, save_path, train_loss, best_val_loss, best_model_path, punctuation_enc):
val_losses = []
val_accs = []
val_f1s = []
label_keys = list(punctuation_enc.keys())
label_vals = list(punctuation_enc.values())
print('data_len', len(data_loader_valid))
for inputs, labels in tqdm(data_loader_valid, total=len(data_loader_valid)):
with torch.no_grad():
if CUDA:
inputs, labels = inputs.cuda(), labels.cuda()
else:
inputs, labels = inputs, labels
# NOTE output: batch_first [B*S, num_class]
output = model(inputs)
# label: [B, S] -> [B*S, ]
labels = labels.view(-1)
val_loss = criterion(output, labels)
val_losses.append(val_loss.cpu().data.numpy())
y_pred = output.argmax(dim=1).cpu().data.numpy().flatten()
y_true = labels.cpu().data.numpy().flatten()
val_accs.append(metrics.accuracy_score(y_true, y_pred))
val_f1s.append(metrics.f1_score(y_true, y_pred, average=None, labels=label_vals))
val_loss = np.mean(val_losses)
val_acc = np.mean(val_accs)
val_f1 = np.array(val_f1s).mean(axis=0)
improved = ''
# model_path = '{}model_{:02d}{:02d}'.format(save_path, epoch, iteration)
model_path = save_path+'model'
torch.save(model.state_dict(), model_path)
if val_loss < best_val_loss:
improved = '*'
best_val_loss = val_loss
best_model_path = model_path
f1_cols = ';'.join(['f1_'+key for key in label_keys])
progress_path = save_path+'progress.csv'
if not os.path.isfile(progress_path):
with open(progress_path, 'w') as f:
f.write('time;epoch;iteration;training loss;loss;accuracy;'+f1_cols+'\n')
f1_vals = ';'.join(['{:.4f}'.format(val) for val in val_f1])
with open(progress_path, 'a') as f:
f.write('{};{};{};{:.4f};{:.4f};{:.4f};{}\n'.format(
datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
epoch+1,
iteration,
train_loss,
val_loss,
val_acc,
f1_vals
))
print("Epoch: {}/{}".format(epoch+1, epochs),
"Iteration: {}/{}".format(iteration, iterations),
"Loss: {:.4f}".format(train_loss),
"Val Loss: {:.4f}".format(val_loss),
"Acc: {:.4f}".format(val_acc),
"F1: {}".format(f1_vals),
improved)
return best_val_loss, best_model_path
def train(model, optimizer, criterion, epochs, data_loader_train, data_loader_valid, save_path, punctuation_enc, iterations=3, best_val_loss=1e9):
print_every = len(data_loader_train)//iterations+1
clip = 5
best_model_path = None
model.train()
# print('data_len', print_every)
pbar = tqdm(total=print_every)
# print('epoch size', epochs)
for e in range(epochs):
counter = 1
iteration = 1
for inputs, labels in data_loader_train:
if CUDA:
inputs, labels = inputs.cuda(), labels.cuda()
else:
inputs = inputs
labels = labels
# print('inputs shape', inputs.shape)
# print('inputs type', type(inputs))
# print('print_first shape:', inputs.shape)
inputs.requires_grad = False
labels.requires_grad = False
# NOTE output: batch_first [B*S, num_class]
output = model(inputs)
# label: [B, S] -> [B*S, ]
labels = labels.view(-1)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss = loss.cpu().data.numpy()
pbar.update()
if counter % print_every == 0:
pbar.close()
model.eval()
best_val_loss, best_model_path = validate(model, criterion, e, epochs, iteration, iterations, data_loader_valid,
save_path, train_loss, best_val_loss, best_model_path, punctuation_enc)
model.train()
pbar = tqdm(total=print_every)
iteration += 1
counter += 1
pbar.close()
model.eval()
best_val_loss, best_model_path = validate(model, criterion, e, epochs, iteration, iterations, data_loader_valid,
save_path, train_loss, best_val_loss, best_model_path, punctuation_enc)
model.train()
if e < epochs-1:
pbar = tqdm(total=print_every)
model.load_state_dict(torch.load(best_model_path))
model.eval()
return model, optimizer, best_val_loss
if __name__ == '__main__':
# punctuation_enc = {
# 'O': 0,
# 'COMMA': 1,
# 'PERIOD': 2,
# 'QUESTION': 3
# }
# punctuation_enc = {
# 'O': 0,
# 'PERIOD': 1,
# }
# 中文数据集标点符号
punctuation_enc = {
'O': 0,
',': 1,
'。': 2,
'?': 3,
}
# segment_size = 32
segment_size = 100
dropout = 0.3
epochs_top = 100
iterations_top = 3
# batch_size_top = 1024
batch_size_top = 40
learning_rate_top = 1e-5
epochs_all = 100
iterations_all = 3
batch_size_all = 20
learning_rate_all = 1e-5
# 一句话的长度
seq_len = 200
hyperparameters = {
'segment_size': segment_size,
'dropout': dropout,
'epochs_top': epochs_top,
'iterations_top': iterations_top,
'batch_size_top': batch_size_top,
'learning_rate_top': learning_rate_top,
'epochs_all': epochs_all,
'iterations_all': iterations_all,
'batch_size_all': batch_size_all,
'learning_rate_all': learning_rate_all,
}
save_path = './models/{}/'.format(datetime.now().strftime("%Y%m%d_%H%M%S"))
os.makedirs(save_path)
with open(save_path+'hyperparameters.json', 'w') as f:
json.dump(hyperparameters, f)
print('LOADING DATA...')
# LREC数据集
# data_train = load_file('data/LREC/train2012')
# data_valid = load_file('data/LREC/dev2012')
# data_test = load_file('data/LREC/test2011')
# asr数据集
# data_test_asr = load_file('data/LREC/test2011asr')
# data_train = load_file('data/NPR-podcasts/train')
# data_valid = load_file('data/NPR-podcasts/valid')
# data_test = load_file('data/NPR-podcasts/test')
# # 中文数据集 4punc**************************
# data_train = load_file('data/zh_pfdsj/train_proc')
# data_valid = load_file('data/zh_pfdsj/dev_proc')
# data_test = load_file('data/zh_pfdsj/test_proc')
# 中文数据集 3punc**************************
data_train = load_file('data/zh_pfdsj_3punc/train')
data_valid = load_file('data/zh_pfdsj_3punc/valid')
data_test = load_file('data/zh_pfdsj_3punc/test')
# # IWSLT中文数据集**************************
# data_train = load_file('data/zh_iwslt/train')
# data_valid = load_file('data/zh_iwslt/valid')
# data_test = load_file('data/zh_iwslt/test')
# vocab.txt所在的位置
# tokenizer = BertTokenizer.from_pretrained('./models/', do_lower_case=True)
# tokenizer = AutoTokenizer.from_pretrained('./models/albert_en/', do_lower_case=True)
# 中文数据集tokenizer
# tokenizer = BertTokenizer.from_pretrained('./models/albert_chinese_small/', do_lower_case=True)
# distillbert
# tokenizer = AutoTokenizer.from_pretrained('./models/bert_distill_chinese', do_lower_case=True)
# NOTE ALbert-small-rnn tokenizer
# tokenizer = BertTokenizer.from_pretrained('./models/albert_chinese_small/', do_lower_case=True)
# NOTE bert-based-chinese tokenizer
tokenizer = BertTokenizer.from_pretrained('./models/bert_base_chinese/', do_lower_case=True)
print('PREPROCESSING DATA...')
X_train, y_train = preprocess_data(data_train, tokenizer, punctuation_enc, seq_len)
X_valid, y_valid = preprocess_data(data_valid, tokenizer, punctuation_enc, seq_len)
print('INITIALIZING MODEL...')
output_size = len(punctuation_enc)
# # 原始bert
# if CUDA:
# bert_punc = nn.DataParallel(BertPunc(segment_size, output_size, dropout).cuda())
# else:
# bert_punc = BertPunc(segment_size, output_size, dropout)
# # Distill-Bert
# if CUDA:
# bert_punc = nn.DataParallel(DistillBertPunc(segment_size, output_size, dropout).cuda())
# else:
# bert_punc = DistillBertPunc(segment_size, output_size, dropout)
# # ALBert
# if CUDA:
# bert_punc = nn.DataParallel(ALBertPunc(segment_size, output_size, dropout, tokenizer.vocab_size()).cuda())
# else:
# bert_punc = ALBertPunc(segment_size, output_size, dropout, tokenizer.vocab_size())
# # Bart
# if CUDA:
# bert_punc = nn.DataParallel(BartPunc(segment_size, output_size, dropout).cuda())
# else:
# bert_punc = BartPunc(segment_size, output_size, dropout)
# # ALBert
# if CUDA:
# bert_punc = nn.DataParallel(ALBertSmallPunc(segment_size, output_size, dropout, tokenizer.vocab_size).cuda())
# else:
# bert_punc = ALBertSmallPunc(segment_size, output_size, dropout, tokenizer.vocab_size)
# # Distill-Bert-hidden
# if CUDA:
# bert_punc = nn.DataParallel(BertDistillHiddenPunc(segment_size, output_size, dropout, None).cuda())
# else:
# bert_punc = BertDistillHiddenPunc(segment_size, output_size, dropout, None)
# # NOTE ALBert-small-RNN-Punc
# if CUDA:
# bert_punc = ALBertSmallRNNPunc(seq_len, output_size, dropout, None).cuda()
# else:
# print("FUCKINHG********code")
# bert_punc = ALBertSmallRNNPunc(seq_len, output_size, dropout, None)
# # NOTE ALBert-small-RNN-Punc
# if CUDA:
# bert_punc = ALBertSmallCNNLSTMPunc(seq_len, output_size, dropout, None).cuda()
# else:
# print("FUCKINHG********code")
# bert_punc = ALBertSmallCNNLSTMPunc(seq_len, output_size, dropout, None)
# # NOTE Bert-Chinese-base rnn-linear
# if CUDA:
# bert_punc = BertChineseRNNnewLinearPunc(seq_len, output_size, dropout, None).cuda()
# else:
# print("FUCKINHG********code")
# bert_punc = BertChineseRNNnewLinearPunc(seq_len, output_size, dropout, None)
# # NOTE Bert-Chinese-Linear
if CUDA:
bert_punc = BertChineseLinearPunc(seq_len, output_size, dropout, None).cuda()
else:
print("FUCKINHG********code")
bert_punc = BertChineseLinearPunc(seq_len, output_size, dropout, None)
# # NOTE ALBert-small-RNN-newLinear-Punc
# if CUDA:
# bert_punc = ALBertSmallRNNnewLinearPunc(seq_len, output_size, dropout, None).cuda()
# else:
# bert_punc = ALBertSmallRNNnewLinearPunc(seq_len, output_size, dropout, None)
print(bert_punc)
# print('TRAINING TOP LAYER...')
# data_loader_train = create_data_loader(X_train, y_train, True, batch_size_top)
# data_loader_valid = create_data_loader(X_valid, y_valid, False, batch_size_top)
# for p in bert_punc.bert.parameters():
# p.requires_grad = False
# optimizer = optim.Adam(bert_punc.parameters(), lr=learning_rate_top)
# criterion = nn.CrossEntropyLoss()
# bert_punc, optimizer, best_val_loss = train(bert_punc, optimizer, criterion, epochs_top,
# data_loader_train, data_loader_valid, save_path, punctuation_enc, iterations_top, best_val_loss=1e9)
best_val_loss=1e9
print('TRAINING ALL LAYERS...')
data_loader_train = create_data_loader(X_train, y_train, True, batch_size_all)
data_loader_valid = create_data_loader(X_valid, y_valid, False, batch_size_all)
for p in bert_punc.bert.parameters():
p.requires_grad = True
optimizer = optim.Adam(bert_punc.parameters(), lr=learning_rate_all)
# 不同层,不同的学习率
# optimizer = optim.Adam(
# [
# {'params': bert_punc.bert.parameters(), 'lr': learning_rate_all},
# {'params': bert_punc.gru.parameters(), 'lr': 10e-3},
# {'params': bert_punc.fc.parameters(), 'lr': 10e-3},
# ]
# )
print(optimizer)
criterion = nn.CrossEntropyLoss()
bert_punc, optimizer, best_val_loss = train(bert_punc, optimizer, criterion, epochs_all,
data_loader_train, data_loader_valid, save_path, punctuation_enc, iterations_all, best_val_loss=best_val_loss)