-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathinference.py
205 lines (173 loc) · 10.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) Institute of Information Processing, Leibniz University Hannover.
import argparse
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
from models import build_model
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--dataset', default='vg')
# image path
parser.add_argument('--img_path', type=str, default='demo/vg1.jpg',
help="Path of the test image")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_entities', default=100, type=int,
help="Number of query slots")
parser.add_argument('--num_triplets', default=200, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--resume', default='ckpt/checkpoint0149_oi.pth', help='resume from checkpoint')
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
parser.add_argument('--set_iou_threshold', default=0.7, type=float,
help="giou box coefficient in the matching cost")
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--rel_loss_coef', default=1, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# distributed training parameters
parser.add_argument('--return_interm_layers', action='store_true',
help="Return the fpn if there is the tag")
return parser
def main(args):
transform = T.Compose([
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
# VG classes
CLASSES = [ 'N/A', 'airplane', 'animal', 'arm', 'bag', 'banana', 'basket', 'beach', 'bear', 'bed', 'bench', 'bike',
'bird', 'board', 'boat', 'book', 'boot', 'bottle', 'bowl', 'box', 'boy', 'branch', 'building',
'bus', 'cabinet', 'cap', 'car', 'cat', 'chair', 'child', 'clock', 'coat', 'counter', 'cow', 'cup',
'curtain', 'desk', 'dog', 'door', 'drawer', 'ear', 'elephant', 'engine', 'eye', 'face', 'fence',
'finger', 'flag', 'flower', 'food', 'fork', 'fruit', 'giraffe', 'girl', 'glass', 'glove', 'guy',
'hair', 'hand', 'handle', 'hat', 'head', 'helmet', 'hill', 'horse', 'house', 'jacket', 'jean',
'kid', 'kite', 'lady', 'lamp', 'laptop', 'leaf', 'leg', 'letter', 'light', 'logo', 'man', 'men',
'motorcycle', 'mountain', 'mouth', 'neck', 'nose', 'number', 'orange', 'pant', 'paper', 'paw',
'people', 'person', 'phone', 'pillow', 'pizza', 'plane', 'plant', 'plate', 'player', 'pole', 'post',
'pot', 'racket', 'railing', 'rock', 'roof', 'room', 'screen', 'seat', 'sheep', 'shelf', 'shirt',
'shoe', 'short', 'sidewalk', 'sign', 'sink', 'skateboard', 'ski', 'skier', 'sneaker', 'snow',
'sock', 'stand', 'street', 'surfboard', 'table', 'tail', 'tie', 'tile', 'tire', 'toilet', 'towel',
'tower', 'track', 'train', 'tree', 'truck', 'trunk', 'umbrella', 'vase', 'vegetable', 'vehicle',
'wave', 'wheel', 'window', 'windshield', 'wing', 'wire', 'woman', 'zebra']
REL_CLASSES = ['__background__', 'above', 'across', 'against', 'along', 'and', 'at', 'attached to', 'behind',
'belonging to', 'between', 'carrying', 'covered in', 'covering', 'eating', 'flying in', 'for',
'from', 'growing on', 'hanging from', 'has', 'holding', 'in', 'in front of', 'laying on',
'looking at', 'lying on', 'made of', 'mounted on', 'near', 'of', 'on', 'on back of', 'over',
'painted on', 'parked on', 'part of', 'playing', 'riding', 'says', 'sitting on', 'standing on',
'to', 'under', 'using', 'walking in', 'walking on', 'watching', 'wearing', 'wears', 'with']
model, _, _ = build_model(args)
ckpt = torch.load(args.resume)
model.load_state_dict(ckpt['model'])
model.eval()
img_path = args.img_path
im = Image.open(img_path)
# mean-std normalize the input image (batch-size: 1)
img = transform(im).unsqueeze(0)
# propagate through the model
outputs = model(img)
# keep only predictions with 0.+ confidence
probas = outputs['rel_logits'].softmax(-1)[0, :, :-1]
probas_sub = outputs['sub_logits'].softmax(-1)[0, :, :-1]
probas_obj = outputs['obj_logits'].softmax(-1)[0, :, :-1]
keep = torch.logical_and(probas.max(-1).values > 0.3, torch.logical_and(probas_sub.max(-1).values > 0.3,
probas_obj.max(-1).values > 0.3))
# convert boxes from [0; 1] to image scales
sub_bboxes_scaled = rescale_bboxes(outputs['sub_boxes'][0, keep], im.size)
obj_bboxes_scaled = rescale_bboxes(outputs['obj_boxes'][0, keep], im.size)
topk = 10
keep_queries = torch.nonzero(keep, as_tuple=True)[0]
indices = torch.argsort(-probas[keep_queries].max(-1)[0] * probas_sub[keep_queries].max(-1)[0] * probas_obj[keep_queries].max(-1)[0])[:topk]
keep_queries = keep_queries[indices]
# use lists to store the outputs via up-values
conv_features, dec_attn_weights_sub, dec_attn_weights_obj = [], [], []
hooks = [
model.backbone[-2].register_forward_hook(
lambda self, input, output: conv_features.append(output)
),
model.transformer.decoder.layers[-1].cross_attn_sub.register_forward_hook(
lambda self, input, output: dec_attn_weights_sub.append(output[1])
),
model.transformer.decoder.layers[-1].cross_attn_obj.register_forward_hook(
lambda self, input, output: dec_attn_weights_obj.append(output[1])
)
]
with torch.no_grad():
# propagate through the model
outputs = model(img)
for hook in hooks:
hook.remove()
# don't need the list anymore
conv_features = conv_features[0]
dec_attn_weights_sub = dec_attn_weights_sub[0]
dec_attn_weights_obj = dec_attn_weights_obj[0]
# get the feature map shape
h, w = conv_features['0'].tensors.shape[-2:]
im_w, im_h = im.size
fig, axs = plt.subplots(ncols=len(indices), nrows=3, figsize=(22, 7))
for idx, ax_i, (sxmin, symin, sxmax, symax), (oxmin, oymin, oxmax, oymax) in \
zip(keep_queries, axs.T, sub_bboxes_scaled[indices], obj_bboxes_scaled[indices]):
ax = ax_i[0]
ax.imshow(dec_attn_weights_sub[0, idx].view(h, w))
ax.axis('off')
ax.set_title(f'query id: {idx.item()}')
ax = ax_i[1]
ax.imshow(dec_attn_weights_obj[0, idx].view(h, w))
ax.axis('off')
ax = ax_i[2]
ax.imshow(im)
ax.add_patch(plt.Rectangle((sxmin, symin), sxmax - sxmin, symax - symin,
fill=False, color='blue', linewidth=2.5))
ax.add_patch(plt.Rectangle((oxmin, oymin), oxmax - oxmin, oymax - oymin,
fill=False, color='orange', linewidth=2.5))
ax.axis('off')
ax.set_title(CLASSES[probas_sub[idx].argmax()]+' '+REL_CLASSES[probas[idx].argmax()]+' '+CLASSES[probas_obj[idx].argmax()], fontsize=10)
fig.tight_layout()
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser('RelTR inference', parents=[get_args_parser()])
args = parser.parse_args()
main(args)