-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
66 lines (51 loc) · 2.07 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import pandas as pd
from PIL import Image
import torch.utils
from utils.data_augmentation import *
class myDataset(torch.utils.data.Dataset):
"""
此类用于加载训练时的数据集,不包括边label
"""
def __init__(self, idx_path, img_dir, mask_dir, transform=None, mask_transform=None):
self.img_dir = img_dir
self.mask_dir = mask_dir
self.img_names = list(pd.read_csv(idx_path, dtype=object)['id'])
self.transform = transform
self.mask_transform = mask_transform
self.data_enhance = data_augmentation
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
img_name = self.img_names[idx]
img_path = os.path.join(self.img_dir, img_name + '.jpg')
mask_path = os.path.join(self.mask_dir, img_name + '.png')
image = Image.open(img_path).convert('RGB')
mask = Image.open(mask_path).convert('L')
image, mask = self.data_enhance(image, mask)
if self.transform:
image = self.transform(image)
if self.mask_transform:
mask = self.mask_transform(mask)
return image, mask
class myTestDataset(torch.utils.data.Dataset):
"""
此类用于加载测试时所需的数据 , 跟上边的主要差别是,使用的数据增强的技术不容
"""
def __init__(self, idx_path, img_dir, imshape=200):
self.img_dir = img_dir
self.img_names = list(pd.read_csv(idx_path, dtype=object)['id'])
self.transform = transforms.Compose([
transforms.Resize((imshape, imshape)),
transforms.ToTensor()
])
self.data_enhance = data_augmentation_test
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
img_name = self.img_names[idx]
img_path = os.path.join(self.img_dir, img_name + '.jpg')
image = Image.open(img_path).convert('RGB')
image = self.data_enhance(image)
image = self.transform(image)
return image, img_name # 这里返回模型的名字即可