-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathmodel.py
503 lines (450 loc) · 23.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import random
from params import Params
from utils import Vocab, Hypothesis, word_detector
from typing import Union, List
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
eps = 1e-31
class EncoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, bidi=True, *, rnn_drop: float=0):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.num_directions = 2 if bidi else 1
self.gru = nn.GRU(embed_size, hidden_size, bidirectional=bidi, dropout=rnn_drop)
def forward(self, embedded, hidden, input_lengths=None):
"""
:param embedded: (src seq len, batch size, embed size)
:param hidden: (num directions, batch size, encoder hidden size)
:param input_lengths: list containing the non-padded length of each sequence in this batch;
if set, we use `PackedSequence` to skip the PAD inputs and leave the
corresponding encoder states as zeros
:return: (src seq len, batch size, hidden size * num directions = decoder hidden size)
Perform multi-step encoding.
"""
if input_lengths is not None:
embedded = pack_padded_sequence(embedded, input_lengths)
output, hidden = self.gru(embedded, hidden)
if input_lengths is not None:
output, _ = pad_packed_sequence(output)
if self.num_directions > 1:
# hidden: (num directions, batch, hidden) => (1, batch, hidden * 2)
batch_size = hidden.size(1)
hidden = hidden.transpose(0, 1).contiguous().view(1, batch_size,
self.hidden_size * self.num_directions)
return output, hidden
def init_hidden(self, batch_size):
return torch.zeros(self.num_directions, batch_size, self.hidden_size, device=DEVICE)
class DecoderRNN(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, *, enc_attn=True, dec_attn=True,
enc_attn_cover=True, pointer=True, tied_embedding=None, out_embed_size=None,
in_drop: float=0, rnn_drop: float=0, out_drop: float=0, enc_hidden_size=None):
super(DecoderRNN, self).__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.combined_size = self.hidden_size
self.enc_attn = enc_attn
self.dec_attn = dec_attn
self.enc_attn_cover = enc_attn_cover
self.pointer = pointer
self.out_embed_size = out_embed_size
if tied_embedding is not None and self.out_embed_size and embed_size != self.out_embed_size:
print("Warning: Output embedding size %d is overriden by its tied embedding size %d."
% (self.out_embed_size, embed_size))
self.out_embed_size = embed_size
self.in_drop = nn.Dropout(in_drop) if in_drop > 0 else None
self.gru = nn.GRU(embed_size, self.hidden_size, dropout=rnn_drop)
if enc_attn:
if not enc_hidden_size: enc_hidden_size = self.hidden_size
self.enc_bilinear = nn.Bilinear(self.hidden_size, enc_hidden_size, 1)
self.combined_size += enc_hidden_size
if enc_attn_cover:
self.cover_weight = nn.Parameter(torch.rand(1))
if dec_attn:
self.dec_bilinear = nn.Bilinear(self.hidden_size, self.hidden_size, 1)
self.combined_size += self.hidden_size
self.out_drop = nn.Dropout(out_drop) if out_drop > 0 else None
if pointer:
self.ptr = nn.Linear(self.combined_size, 1)
if tied_embedding is not None and embed_size != self.combined_size:
# use pre_out layer if combined size is different from embedding size
self.out_embed_size = embed_size
if self.out_embed_size: # use pre_out layer
self.pre_out = nn.Linear(self.combined_size, self.out_embed_size)
size_before_output = self.out_embed_size
else: # don't use pre_out layer
size_before_output = self.combined_size
self.out = nn.Linear(size_before_output, vocab_size)
if tied_embedding is not None:
self.out.weight = tied_embedding.weight
def forward(self, embedded, hidden, encoder_states=None, decoder_states=None, coverage_vector=None, *,
encoder_word_idx=None, ext_vocab_size: int=None, log_prob: bool=True):
"""
:param embedded: (batch size, embed size)
:param hidden: (1, batch size, decoder hidden size)
:param encoder_states: (src seq len, batch size, hidden size), for attention mechanism
:param decoder_states: (past dec steps, batch size, hidden size), for attention mechanism
:param encoder_word_idx: (src seq len, batch size), for pointer network
:param ext_vocab_size: the dynamic vocab size, determined by the max num of OOV words contained
in any src seq in this batch, for pointer network
:param log_prob: return log probability instead of probability
:return: tuple of four things:
1. word prob or log word prob, (batch size, dynamic vocab size);
2. RNN hidden state after this step, (1, batch size, decoder hidden size);
3. attention weights over encoder states, (batch size, src seq len);
4. prob of copying by pointing as opposed to generating, (batch size, 1)
Perform single-step decoding.
"""
batch_size = embedded.size(0)
combined = torch.zeros(batch_size, self.combined_size, device=DEVICE)
if self.in_drop: embedded = self.in_drop(embedded)
output, hidden = self.gru(embedded.unsqueeze(0), hidden) # unsqueeze and squeeze are necessary
combined[:, :self.hidden_size] = output.squeeze(0) # as RNN expects a 3D tensor (step=1)
offset = self.hidden_size
enc_attn, prob_ptr = None, None # for visualization
if self.enc_attn or self.pointer:
# energy and attention: (num encoder states, batch size, 1)
num_enc_steps = encoder_states.size(0)
enc_total_size = encoder_states.size(2)
enc_energy = self.enc_bilinear(hidden.expand(num_enc_steps, batch_size, -1).contiguous(),
encoder_states)
if self.enc_attn_cover and coverage_vector is not None:
enc_energy += self.cover_weight * torch.log(coverage_vector.transpose(0, 1).unsqueeze(2) + eps)
# transpose => (batch size, num encoder states, 1)
enc_attn = F.softmax(enc_energy, dim=0).transpose(0, 1)
if self.enc_attn:
# context: (batch size, encoder hidden size, 1)
enc_context = torch.bmm(encoder_states.permute(1, 2, 0), enc_attn)
combined[:, offset:offset+enc_total_size] = enc_context.squeeze(2)
offset += enc_total_size
enc_attn = enc_attn.squeeze(2)
if self.dec_attn:
if decoder_states is not None and len(decoder_states) > 0:
dec_energy = self.dec_bilinear(hidden.expand_as(decoder_states).contiguous(),
decoder_states)
dec_attn = F.softmax(dec_energy, dim=0).transpose(0, 1)
dec_context = torch.bmm(decoder_states.permute(1, 2, 0), dec_attn)
combined[:, offset:offset + self.hidden_size] = dec_context.squeeze(2)
offset += self.hidden_size
if self.out_drop: combined = self.out_drop(combined)
# generator
if self.out_embed_size:
out_embed = self.pre_out(combined)
else:
out_embed = combined
logits = self.out(out_embed) # (batch size, vocab size)
# pointer
if self.pointer:
output = torch.zeros(batch_size, ext_vocab_size, device=DEVICE)
# distribute probabilities between generator and pointer
prob_ptr = F.sigmoid(self.ptr(combined)) # (batch size, 1)
prob_gen = 1 - prob_ptr
# add generator probabilities to output
gen_output = F.softmax(logits, dim=1) # can't use log_softmax due to adding probabilities
output[:, :self.vocab_size] = prob_gen * gen_output
# add pointer probabilities to output
ptr_output = enc_attn
output.scatter_add_(1, encoder_word_idx.transpose(0, 1), prob_ptr * ptr_output)
if log_prob: output = torch.log(output + eps)
else:
if log_prob: output = F.log_softmax(logits, dim=1)
else: output = F.softmax(logits, dim=1)
return output, hidden, enc_attn, prob_ptr
class Seq2SeqOutput(object):
def __init__(self, encoder_outputs: torch.Tensor, encoder_hidden: torch.Tensor,
decoded_tokens: torch.Tensor, loss: Union[torch.Tensor, float]=0,
loss_value: float=0, enc_attn_weights: torch.Tensor=None,
ptr_probs: torch.Tensor=None):
self.encoder_outputs = encoder_outputs
self.encoder_hidden = encoder_hidden
self.decoded_tokens = decoded_tokens # (out seq len, batch size)
self.loss = loss # scalar
self.loss_value = loss_value # float value, excluding coverage loss
self.enc_attn_weights = enc_attn_weights # (out seq len, batch size, src seq len)
self.ptr_probs = ptr_probs # (out seq len, batch size)
class Seq2Seq(nn.Module):
def __init__(self, vocab: Vocab, params: Params, max_dec_steps=None):
"""
:param vocab: mainly for info about special tokens and vocab size
:param params: model hyper-parameters
:param max_dec_steps: max num of decoding steps (only effective at test time, as during
training the num of steps is determined by the `target_tensor`); it is
safe to change `self.max_dec_steps` as the network architecture is
independent of src/tgt seq lengths
Create the seq2seq model; its encoder and decoder will be created automatically.
"""
super(Seq2Seq, self).__init__()
self.vocab = vocab
self.vocab_size = len(vocab)
if vocab.embeddings is not None:
self.embed_size = vocab.embeddings.shape[1]
if params.embed_size is not None and self.embed_size != params.embed_size:
print("Warning: Model embedding size %d is overriden by pre-trained embedding size %d."
% (params.embed_size, self.embed_size))
embedding_weights = torch.from_numpy(vocab.embeddings)
else:
self.embed_size = params.embed_size
embedding_weights = None
self.max_dec_steps = params.max_tgt_len + 1 if max_dec_steps is None else max_dec_steps
self.enc_attn = params.enc_attn
self.enc_attn_cover = params.enc_attn_cover
self.dec_attn = params.dec_attn
self.pointer = params.pointer
self.cover_loss = params.cover_loss
self.cover_func = params.cover_func
enc_total_size = params.hidden_size * 2 if params.enc_bidi else params.hidden_size
if params.dec_hidden_size:
dec_hidden_size = params.dec_hidden_size
self.enc_dec_adapter = nn.Linear(enc_total_size, dec_hidden_size)
else:
dec_hidden_size = enc_total_size
self.enc_dec_adapter = None
self.embedding = nn.Embedding(self.vocab_size, self.embed_size, padding_idx=vocab.PAD,
_weight=embedding_weights)
self.encoder = EncoderRNN(self.embed_size, params.hidden_size, params.enc_bidi,
rnn_drop=params.enc_rnn_dropout)
self.decoder = DecoderRNN(self.vocab_size, self.embed_size, dec_hidden_size,
enc_attn=params.enc_attn, dec_attn=params.dec_attn,
pointer=params.pointer, out_embed_size=params.out_embed_size,
tied_embedding=self.embedding if params.tie_embed else None,
in_drop=params.dec_in_dropout, rnn_drop=params.dec_rnn_dropout,
out_drop=params.dec_out_dropout, enc_hidden_size=enc_total_size)
def filter_oov(self, tensor, ext_vocab_size):
"""Replace any OOV index in `tensor` with UNK"""
if ext_vocab_size and ext_vocab_size > self.vocab_size:
result = tensor.clone()
result[tensor >= self.vocab_size] = self.vocab.UNK
return result
return tensor
def get_coverage_vector(self, enc_attn_weights):
"""Combine the past attention weights into one vector"""
if self.cover_func == 'max':
coverage_vector, _ = torch.max(torch.cat(enc_attn_weights), dim=0)
elif self.cover_func == 'sum':
coverage_vector = torch.sum(torch.cat(enc_attn_weights), dim=0)
else:
raise ValueError('Unrecognized cover_func: ' + self.cover_func)
return coverage_vector
def forward(self, input_tensor, target_tensor=None, input_lengths=None, criterion=None, *,
forcing_ratio=0, partial_forcing=True, ext_vocab_size=None, sample=False,
saved_out: Seq2SeqOutput=None, visualize: bool=None, include_cover_loss: bool=False)\
-> Seq2SeqOutput:
"""
:param input_tensor: tensor of word indices, (src seq len, batch size)
:param target_tensor: tensor of word indices, (tgt seq len, batch size)
:param input_lengths: see explanation in `EncoderRNN`
:param criterion: the loss function; if set, loss will be returned
:param forcing_ratio: see explanation in `Params` (requires `target_tensor`, training only)
:param partial_forcing: see explanation in `Params` (training only)
:param ext_vocab_size: see explanation in `DecoderRNN`
:param sample: if True, the returned `decoded_tokens` will be based on random sampling instead
of greedily selecting the token of the highest probability at each step
:param saved_out: the output of this function in a previous run; if set, the encoding step will
be skipped and we reuse the encoder states saved in this object
:param visualize: whether to return data for attention and pointer visualization; if None,
return if no `criterion` is provided
:param include_cover_loss: whether to include coverage loss in the returned `loss_value`
Run the seq2seq model for training or testing.
"""
input_length = input_tensor.size(0)
batch_size = input_tensor.size(1)
log_prob = not (sample or self.decoder.pointer) # don't apply log too soon in these cases
if visualize is None:
visualize = criterion is None
if visualize and not (self.enc_attn or self.pointer):
visualize = False # nothing to visualize
if target_tensor is None:
target_length = self.max_dec_steps
else:
target_length = target_tensor.size(0)
if forcing_ratio == 1:
# if fully teacher-forced, it may be possible to eliminate the for-loop over decoder steps
# for generality, this optimization is not investigated
use_teacher_forcing = True
elif forcing_ratio > 0:
if partial_forcing:
use_teacher_forcing = None # decide later individually in each step
else:
use_teacher_forcing = random.random() < forcing_ratio
else:
use_teacher_forcing = False
if saved_out: # reuse encoder states of a previous run
encoder_outputs = saved_out.encoder_outputs
encoder_hidden = saved_out.encoder_hidden
assert input_length == encoder_outputs.size(0)
assert batch_size == encoder_outputs.size(1)
else: # run the encoder
encoder_hidden = self.encoder.init_hidden(batch_size)
# encoder_embedded: (input len, batch size, embed size)
encoder_embedded = self.embedding(self.filter_oov(input_tensor, ext_vocab_size))
encoder_outputs, encoder_hidden = \
self.encoder(encoder_embedded, encoder_hidden, input_lengths)
# initialize return values
r = Seq2SeqOutput(encoder_outputs, encoder_hidden,
torch.zeros(target_length, batch_size, dtype=torch.long))
if visualize:
r.enc_attn_weights = torch.zeros(target_length, batch_size, input_length)
if self.pointer:
r.ptr_probs = torch.zeros(target_length, batch_size)
decoder_input = torch.tensor([self.vocab.SOS] * batch_size, device=DEVICE)
if self.enc_dec_adapter is None:
decoder_hidden = encoder_hidden
else:
decoder_hidden = self.enc_dec_adapter(encoder_hidden)
decoder_states = []
enc_attn_weights = []
for di in range(target_length):
decoder_embedded = self.embedding(self.filter_oov(decoder_input, ext_vocab_size))
if enc_attn_weights:
coverage_vector = self.get_coverage_vector(enc_attn_weights)
else:
coverage_vector = None
decoder_output, decoder_hidden, dec_enc_attn, dec_prob_ptr = \
self.decoder(decoder_embedded, decoder_hidden, encoder_outputs,
torch.cat(decoder_states) if decoder_states else None, coverage_vector,
encoder_word_idx=input_tensor, ext_vocab_size=ext_vocab_size,
log_prob=log_prob)
if self.dec_attn:
decoder_states.append(decoder_hidden)
# save the decoded tokens
if not sample:
_, top_idx = decoder_output.data.topk(1) # top_idx shape: (batch size, k=1)
else:
prob_distribution = torch.exp(decoder_output) if log_prob else decoder_output
top_idx = torch.multinomial(prob_distribution, 1)
top_idx = top_idx.squeeze(1).detach() # detach from history as input
r.decoded_tokens[di] = top_idx
# compute loss
if criterion:
if target_tensor is None:
gold_standard = top_idx # for sampling
else:
gold_standard = target_tensor[di]
if not log_prob:
decoder_output = torch.log(decoder_output + eps) # necessary for NLLLoss
nll_loss = criterion(decoder_output, gold_standard)
r.loss += nll_loss
r.loss_value += nll_loss.item()
# update attention history and compute coverage loss
if self.enc_attn_cover or (criterion and self.cover_loss > 0):
if coverage_vector is not None and criterion and self.cover_loss > 0:
coverage_loss = torch.sum(torch.min(coverage_vector, dec_enc_attn)) / batch_size \
* self.cover_loss
r.loss += coverage_loss
if include_cover_loss: r.loss_value += coverage_loss.item()
enc_attn_weights.append(dec_enc_attn.unsqueeze(0))
# save data for visualization
if visualize:
r.enc_attn_weights[di] = dec_enc_attn.data
if self.pointer:
r.ptr_probs[di] = dec_prob_ptr.squeeze(1).data
# decide the next input
if use_teacher_forcing or (use_teacher_forcing is None and random.random() < forcing_ratio):
decoder_input = target_tensor[di] # teacher forcing
else:
decoder_input = top_idx
return r
def beam_search(self, input_tensor, input_lengths=None, ext_vocab_size=None, beam_size=4, *,
min_out_len=1, max_out_len=None, len_in_words=True) -> List[Hypothesis]:
"""
:param input_tensor: tensor of word indices, (src seq len, batch size); for now, batch size has
to be 1
:param input_lengths: see explanation in `EncoderRNN`
:param ext_vocab_size: see explanation in `DecoderRNN`
:param beam_size: the beam size
:param min_out_len: required minimum output length
:param max_out_len: required maximum output length (if None, use the model's own value)
:param len_in_words: if True, count output length in words instead of tokens (i.e. do not count
punctuations)
:return: list of the best decoded sequences, in descending order of probability
Use beam search to generate summaries.
"""
batch_size = input_tensor.size(1)
assert batch_size == 1
if max_out_len is None:
max_out_len = self.max_dec_steps - 1 # max_out_len doesn't count EOS
# encode
encoder_hidden = self.encoder.init_hidden(batch_size)
# encoder_embedded: (input len, batch size, embed size)
encoder_embedded = self.embedding(self.filter_oov(input_tensor, ext_vocab_size))
encoder_outputs, encoder_hidden = \
self.encoder(encoder_embedded, encoder_hidden, input_lengths)
if self.enc_dec_adapter is None:
decoder_hidden = encoder_hidden
else:
decoder_hidden = self.enc_dec_adapter(encoder_hidden)
# turn batch size from 1 to beam size (by repeating)
# if we want dynamic batch size, the following must be created for all possible batch sizes
encoder_outputs = encoder_outputs.expand(-1, beam_size, -1).contiguous()
input_tensor = input_tensor.expand(-1, beam_size).contiguous()
# decode
hypos = [Hypothesis([self.vocab.SOS], [], decoder_hidden, [], [], 1)]
results, backup_results = [], []
step = 0
while hypos and step < 2 * max_out_len: # prevent infinitely generating punctuations
# make batch size equal to beam size (n_hypos <= beam size)
n_hypos = len(hypos)
if n_hypos < beam_size:
hypos.extend(hypos[-1] for _ in range(beam_size - n_hypos))
# assemble existing hypotheses into a batch
decoder_input = torch.tensor([h.tokens[-1] for h in hypos], device=DEVICE)
decoder_hidden = torch.cat([h.dec_hidden for h in hypos], 1)
if self.dec_attn and step > 0: # dim 0 is decoding step, dim 1 is beam batch
decoder_states = torch.cat([torch.cat(h.dec_states, 0) for h in hypos], 1)
else:
decoder_states = None
if self.enc_attn_cover:
enc_attn_weights = [torch.cat([h.enc_attn_weights[i] for h in hypos], 1)
for i in range(step)]
else:
enc_attn_weights = []
if enc_attn_weights:
coverage_vector = self.get_coverage_vector(enc_attn_weights) # shape: (beam size, src len)
else:
coverage_vector = None
# run the decoder over the assembled batch
decoder_embedded = self.embedding(self.filter_oov(decoder_input, ext_vocab_size))
decoder_output, decoder_hidden, dec_enc_attn, dec_prob_ptr = \
self.decoder(decoder_embedded, decoder_hidden, encoder_outputs,
decoder_states, coverage_vector,
encoder_word_idx=input_tensor, ext_vocab_size=ext_vocab_size)
top_v, top_i = decoder_output.data.topk(beam_size) # shape of both: (beam size, beam size)
# create new hypotheses
new_hypos = []
for in_idx in range(n_hypos):
for out_idx in range(beam_size):
new_tok = top_i[in_idx][out_idx].item()
new_prob = top_v[in_idx][out_idx].item()
if len_in_words:
non_word = not self.vocab.is_word(new_tok)
else:
non_word = new_tok == self.vocab.EOS # only SOS & EOS don't count
new_hypo = hypos[in_idx].create_next(new_tok, new_prob,
decoder_hidden[0][in_idx].unsqueeze(0).unsqueeze(0),
self.dec_attn,
dec_enc_attn[in_idx].unsqueeze(0).unsqueeze(0)
if dec_enc_attn is not None else None, non_word)
new_hypos.append(new_hypo)
# process the new hypotheses
new_hypos = sorted(new_hypos, key=lambda h: -h.avg_log_prob)
hypos = []
new_complete_results, new_incomplete_results = [], []
for nh in new_hypos:
length = len(nh)
if nh.tokens[-1] == self.vocab.EOS: # a complete hypothesis
if len(new_complete_results) < beam_size and min_out_len <= length <= max_out_len:
new_complete_results.append(nh)
elif len(hypos) < beam_size and length < max_out_len: # an incomplete hypothesis
hypos.append(nh)
elif length == max_out_len and len(new_incomplete_results) < beam_size:
new_incomplete_results.append(nh)
if new_complete_results:
results.extend(new_complete_results)
elif new_incomplete_results:
backup_results.extend(new_incomplete_results)
step += 1
if not results: # if no sequence ends with EOS within desired length, fallback to sequences
results = backup_results # that are "truncated" at the end to max_out_len
return sorted(results, key=lambda h: -h.avg_log_prob)[:beam_size]