-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_youra.py
174 lines (143 loc) · 4.97 KB
/
evaluate_youra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import json
import logging
import multiprocessing as mp
import pandas as pd
from src import LongBenchGrader, Config
DS_NAME = [
"narrativeqa",
"qasper",
"multifieldqa_en",
"hotpotqa",
"2wikimqa",
"musique",
]
MODEL_NAME = [
"llama2",
"llama3",
"mistralai",
]
TYPE = ["youra"]
if __name__ == "__main__":
log = logging.getLogger(__name__)
log.setLevel(logging.INFO)
log.addHandler(logging.StreamHandler())
tq = mp.JoinableQueue()
manager = mp.Manager()
result_list = manager.list()
def mp_grader(log, grader, task_queue):
"""Worker process for grading tasks."""
global result_list
while True:
task = task_queue.get()
if task is None:
task_queue.task_done()
break
else:
model_name, ds_name, q_index, _type, _truth, _generated = task
try:
_result = grader.grade("", _truth, _generated)
result_list.append(
{
"model_name": model_name,
"ds_name": ds_name,
"q_index": q_index,
"type": _type,
"grader": _result["grader"],
"scores": _result["scores"],
"score": _result["max_score"],
}
)
log.debug(f"{task} Result put {_result}")
except Exception as e:
log.warn(e)
log.warn("Error in grading")
task_queue.task_done() # Mark the task as done
log.debug("Process done")
# Start worker processes
num_workers = os.cpu_count()
workers = []
config_filename = "config/config.llama2.json"
with open(config_filename, "r", encoding="utf-8") as f:
loaded = json.load(f)
config = Config.from_dict(loaded)
for i in range(num_workers):
lbgrader = LongBenchGrader(config)
p = mp.Process(target=mp_grader, args=(log, lbgrader, tq))
p.start()
workers.append(p)
vllm_df_list = []
i = 0
for model_name in MODEL_NAME:
for ds_name in DS_NAME:
for _type in TYPE:
filename = f"results/{model_name}.{_type}.{ds_name}.json"
with open(filename, "r", encoding="utf-8") as f:
data = json.load(f)
elapsed_time = data["elapsed_time"]
num_requests = data["num_requests"]
total_num_tokens = data["total_num_tokens"]
requests_per_second = data["requests_per_second"]
tokens_per_second = data["tokens_per_second"]
generated = data["generated"]
truth = data["truth"]
vllm_df_list.append(
pd.DataFrame(
{
"model_name": model_name,
"ds_name": ds_name,
"type": _type,
"elapsed_time": elapsed_time,
"num_requests": num_requests,
"total_num_tokens": total_num_tokens,
"requests_per_second": requests_per_second,
"tokens_per_second": tokens_per_second,
},
index=[i],
)
)
i += 1
for q_index, (g, t) in enumerate(zip(generated, truth)):
tq.put((model_name, ds_name, q_index, _type, t, [g]))
df = pd.concat(vllm_df_list)
df.to_csv("results/table3.csv", index=False)
for _ in range(num_workers):
tq.put(None)
tq.join() # Wait until all tasks are done
for i, p in enumerate(workers):
p.join()
log.info("Collected results: %d", len(result_list))
quality_df_list = []
for i, r in enumerate(result_list):
print(f"Result {i}: {r}")
quality_df_list.append(pd.DataFrame(r))
df = pd.concat(quality_df_list)
pd.options.display.float_format = "{:,.2f}".format
df.loc[
(df["ds_name"] == "narrativeqa")
| (df["ds_name"] == "qasper")
| (df["ds_name"] == "multifieldqa_en"),
"ds_type",
] = "SDoc"
df.loc[
(df["ds_name"] == "hotpotqa")
| (df["ds_name"] == "musique")
| (df["ds_name"] == "2wikimqa"),
"ds_type",
] = "MDoc"
df["ds_type"] = pd.Categorical(df["ds_type"], ["SDoc", "MDoc"])
df["ds_name"] = pd.Categorical(
df["ds_name"],
["narrativeqa", "qasper", "multifieldqa_en", "hotpotqa", "2wikimqa", "musique"],
)
df = (
pd.pivot_table(
df,
values=["score"],
columns=["ds_type", "ds_name"],
index=["model_name", "type"],
)
* 100
)
df["score"].groupby(level=0, axis=1).mean().to_csv("results/table4.csv")
df["score"].to_csv("results/table6.csv")