See arxiv: https://arxiv.org/abs/1804.02047
Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond
Prepare your data before training. The format of your data should follow the file in datasets
.
python train.py --dataroot data_path --name model_name --model pix2pix --which_model_netG unet_256 --which_direction BtoA --lambda_A 100 --dataset_mode aligned --use_spp --no_lsgan --norm batch
python test.py --dataroot data_path --name model_name --model pix2pix --which_model_netG unet_256 --which_direction BtoA --dataset_mode aligned --use_spp --norm batch
Run python -m visdom.server
to see the training process.
If you find this work useful for your research, please cite:
@article{ouyang2018pedestrian,
title={Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond},
author={Ouyang, Xi and Cheng, Yu and Jiang, Yifan and Li, Chun-Liang and Zhou, Pan},
journal={arXiv preprint arXiv:1804.02047},
year={2018}
}
Heavily borrow the code from pix2pix