-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
270 lines (217 loc) · 9.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import os
import matplotlib.font_manager as font_manager
from scipy.stats.stats import pearsonr
def load_lexicon(path):
word = 0
score = 1
sentiment_dict = {}
file = open(path, 'r')
lines = file.readlines()
for line in lines:
line_list = line.split()
if len(line_list) < 14:
sentiment_dict[line_list[word]] = line_list[score]
return sentiment_dict
def load_secondary_lexicon(path):
word = 0
score = 1
sentiment_dict = {}
file = open(path, 'r')
lines = file.readlines()
for line in lines:
line_list = line.split()
if len(line_list) < 3:
sentiment_dict[line_list[word]] = line_list[score]
return sentiment_dict
def get_lexicons_similarity(path_lex_p, path_lex_s):
prime_lexicon = load_lexicon(path_lex_p)
second_lexicon = load_secondary_lexicon(path_lex_s)
intersection = prime_lexicon.keys() & second_lexicon.keys()
prime_scores = []
second_scores = []
for key in intersection:
prime_scores.append(float(prime_lexicon[key]))
second_scores.append(float(second_lexicon[key]))
print("overall {} keys".format(len(intersection)))
print(pearsonr(prime_scores, second_scores))
def get_extreme_lexicon(lexicon, threshold, sent):
extreme_lexicon = {}
for key in lexicon:
if sent == "pos":
if float(lexicon[key]) > threshold:
extreme_lexicon[key] = lexicon[key]
elif sent == "neg":
if float(lexicon[key]) < threshold:
extreme_lexicon[key] = lexicon[key]
else:
print("please enter valid sent")
return
print(len(extreme_lexicon))
return extreme_lexicon
def get_extreme_reviews(extreme_lexicon, reviews):
extreme_reviews = []
len_sum = 0
count = 0
for rev in reviews:
if isinstance(rev, str):
if len(rev) < 300000000:
words = rev.split(" ")
for key in extreme_lexicon:
if key in words:
extreme_reviews.append(rev)
#print("###############################")
#print(rev)
break
extreme_reviews = sorted(extreme_reviews, key=len)
for i in range(10):
print("###########\n" + extreme_reviews[i])
words = extreme_reviews[i].split(" ")
for key in extreme_lexicon:
if key in words:
print(key)
count += 1
len_sum += len(extreme_reviews[i])
print(len(extreme_reviews[i]))
print(len_sum/count)
def load_AoA(path):
AoA_dict = {}
df = pd.read_csv(path)
df = df[df['AoArating'].notna()]
words = df["WORD"].tolist()
AoA = df["AoArating"].tolist()
length = len(words)
for i in range(len(words)):
AoA_dict[words[i]] = AoA[i]
return AoA_dict
def slice_data_by_year(df, start_year, end_year, category):
for i in range(start_year, end_year + 1):
df_tmp = df[df["years"] == i].copy()
filename = "data/{}_by_year/{}_df".format(category+"-pc", i)
with open(filename, 'wb') as f:
pickle.dump(df_tmp, f)
def get_star_by_year_df(category, year, stars):
if stars == 1:
sen = "neg"
else:
sen = "pos"
filename = "data/final_data/{}/{}/{}_df".format(category, sen, year)
with open(filename, 'rb') as f:
df_tmp = pickle.load(f)
return df_tmp
def get_time_series(start, end, task_dict, std_dict=None):
years, values, std = [], [], []
for i in range(start, end+1):
years.append(i)
values.append(task_dict[i])
if std_dict:
std.append(std_dict[i])
if std_dict:
return years, values, std
return years, values
def create_figure_pr(categories, start_years, end_years, dicts, x_name, y_name, line_styles, sen, colors, std_dicts,
directory_path, markers=None):
if not os.path.exists(directory_path):
os.makedirs(directory_path)
hfont = {'fontname': 'Times New Roman', 'size': 'xx-large', 'fontweight': 'bold'}
plt.locator_params(axis='x', nbins=3)
for i in range(len(categories)):
temp_category = categories[i].replace("IMDB", "IMDb")
temp_category = temp_category.replace("help", "h")
if std_dicts:
years, values, std = get_time_series(start_years[i], end_years[i], dicts[i], std_dicts[i])
for j in range(len(years)):
years[j] -= start_years[i] + 1
if markers:
plt.plot(years, values, line_styles[i], label=temp_category, color=colors[i], marker=markers[i])
else:
plt.plot(years, values, line_styles[i], label=temp_category, color=colors[i])
else:
years, values = get_time_series(start_years[i], end_years[i], dicts[i])
plt.plot(years, values, line_styles[i], label=categories[i])
font = font_manager.FontProperties(family='Times New Roman',
weight='bold',
style='normal', size='small')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=len(categories), prop=font)
#plt.xlabel(x_name, **hfont)
plt.ylabel(y_name, **hfont)
if sen == "negative":
title = "Negative"
else:
title = "Positive"
plt.title(title, fontname='Times New Roman', size='xx-large', fontweight='bold')
plt.savefig(directory_path + '/{}_{}.png'.format(y_name, sen), dpi=300)
plt.clf()
def create_figure_main(categories, start_years, end_years, dicts, x_name, y_name, line_styles, sen, colors,
std_dicts, directory_path, markers=None):
if not os.path.exists(directory_path):
os.makedirs(directory_path)
hfont = {'fontname': 'Times New Roman', 'size': 'xx-large', 'fontweight': 'bold'}
plt.locator_params(axis='x', nbins=5)
for i in range(len(categories)):
temp_category = categories[i].replace("IMDB", "IMDb")
temp_category = temp_category.replace("help", "h")
if std_dicts:
years, values, std = get_time_series(start_years[i], end_years[i], dicts[i], std_dicts[i])
if markers:
plt.plot(years, values, line_styles[i], label=temp_category, color=colors[i], marker=markers[i])
else:
plt.plot(years, values, line_styles[i], label=temp_category, color=colors[i])
else:
print(start_years, end_years, dicts, i)
years, values = get_time_series(start_years[i], end_years[i], dicts[i])
plt.plot(years, values, line_styles[i], label=categories[i])
font = font_manager.FontProperties(family='Times New Roman',
weight='bold',
style='normal', size='small')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=len(categories), prop=font)
# plt.xlabel(x_name, **hfont)
plt.ylabel(y_name, **hfont)
if sen == "negative":
title = "Negative"
else:
title = "Positive"
plt.title(title, fontname='Times New Roman', size='xx-large', fontweight='bold')
plt.savefig(directory_path + '/{}_{}.png'.format(y_name, sen), dpi=300)
plt.clf()
def save_file(file, filename):
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
with open(filename, 'wb') as f:
pickle.dump(file, f)
def load_file(filename):
with open(filename, 'rb') as f:
file = pickle.load(f)
return file
def format_file_name(category, desc, stars):
file_name_desc = desc.replace(' ', '_')
filename = "results/{}_{}_{}_stars".format(category, file_name_desc, stars)
return filename
def check_if_file_exists(category, desc, stars):
file_name_desc = desc.replace(' ', '_')
filename = "results/{}_{}_{}_stars".format(category, file_name_desc, stars)
return os.path.isfile(filename)
def prepare_helpful(category, start_year, end_year, sen, minimal_freq=50):
for i in range(start_year, end_year + 1):
df = get_star_by_year_df(category, i)
df = df.fillna('0')
if category == "Amazon" or category =="IMDB":
print(category)
df['votes'] = df['votes'].map(lambda x: x.replace(",", ""))
df['votes'] = df['votes'].astype(int)
if category == "IMDB":
df['overall-votes'] = df['overall-votes'].map(lambda x: x.replace(",", ""))
df['overall-votes'] = df['overall-votes'].astype(int)
df['votes'] = df['votes'].astype(int)
df = df[df['votes']*3 > 2*df["overall-votes"]]
df_neg = df[df["scores"] == sen[0]].copy()
df_pos = df[df["scores"] == sen[1]].copy()
if df_neg.shape[0] < 1000 or df_pos.shape[0] < 1000:
print("year {} is problematic, category {}".format(i, category))
df_neg = df_neg[df_neg["votes"] > minimal_freq]
df_pos = df_pos[df_pos["votes"] > minimal_freq]
filename = "data/{}_by_year/{}_df".format(category+"-help", i)
with open(filename, 'wb') as f:
pickle.dump(pd.concat([df_neg, df_pos], axis=0), f)