-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathreal-esrgan.cpp
282 lines (239 loc) · 11.7 KB
/
real-esrgan.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include "cuda_utils.h"
#include "common.hpp"
#include "preprocess.hpp" // preprocess plugin
#include "postprocess.hpp" // postprocess plugin
#include "logging.h"
#include "utils.h"
#include <unistd.h> //access()
#define DEVICE 0 // GPU id
#define BATCH_SIZE 1
// stuff we know about the network and the input/output blobs
static const int PRECISION_MODE = 32; // fp32 : 32, fp16 : 16
static const bool VISUALIZATION = true;
static const int INPUT_H = 640;
static const int INPUT_W = 448;
static const int INPUT_C = 3;
static const int OUT_SCALE = 4;
static const int OUTPUT_SIZE = INPUT_C * INPUT_H * OUT_SCALE * INPUT_W * OUT_SCALE ;
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
static Logger gLogger;
// Creat the engine using only the API and not any parser.
ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, std::string& wts_name) {
INetworkDefinition* network = builder->createNetworkV2(0U);
// Create input tensor of shape {INPUT_H, INPUT_W, INPUT_C} with name INPUT_BLOB_NAME
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ INPUT_H, INPUT_W, INPUT_C });
assert(data);
std::map<std::string, Weights> weightMap = loadWeights(wts_name);
// Custom preprocess (NHWC->NCHW, BGR->RGB, [0, 255]->[0, 1](Normalize))
Preprocess preprocess{ maxBatchSize, INPUT_C, INPUT_H, INPUT_W};
IPluginCreator* preprocess_creator = getPluginRegistry()->getPluginCreator("preprocess", "1");
IPluginV2 *preprocess_plugin = preprocess_creator->createPlugin("preprocess_plugin", (PluginFieldCollection*)&preprocess);
IPluginV2Layer* preprocess_layer = network->addPluginV2(&data, 1, *preprocess_plugin);
preprocess_layer->setName("preprocess_layer");
ITensor* prep = preprocess_layer->getOutput(0);
// conv_first
IConvolutionLayer* conv_first = network->addConvolutionNd(*prep, 64, DimsHW{ 3, 3 }, weightMap["conv_first.weight"], weightMap["conv_first.bias"]);
conv_first->setStrideNd(DimsHW{ 1, 1 });
conv_first->setPaddingNd(DimsHW{ 1, 1 });
conv_first->setName("conv_first");
ITensor* feat = conv_first->getOutput(0);
// conv_body
ITensor* body_feat = RRDB(network, weightMap, feat, "body.0");
for (int idx = 1; idx < 23; idx++) {
body_feat = RRDB(network, weightMap, body_feat, "body." + std::to_string(idx));
}
IConvolutionLayer* conv_body = network->addConvolutionNd(*body_feat, 64, DimsHW{ 3, 3 }, weightMap["conv_body.weight"], weightMap["conv_body.bias"]);
conv_body->setStrideNd(DimsHW{ 1, 1 });
conv_body->setPaddingNd(DimsHW{ 1, 1 });
IElementWiseLayer* ew1 = network->addElementWise(*feat, *conv_body->getOutput(0), ElementWiseOperation::kSUM);
feat = ew1->getOutput(0);
//upsample
IResizeLayer* interpolate_nearest = network->addResize(*feat);
float sclaes1[] = { 1, 2, 2 };
interpolate_nearest->setScales(sclaes1, 3);
interpolate_nearest->setResizeMode(ResizeMode::kNEAREST);
IConvolutionLayer* conv_up1 = network->addConvolutionNd(*interpolate_nearest->getOutput(0), 64, DimsHW{ 3, 3 }, weightMap["conv_up1.weight"], weightMap["conv_up1.bias"]);
conv_up1->setStrideNd(DimsHW{ 1, 1 });
conv_up1->setPaddingNd(DimsHW{ 1, 1 });
IActivationLayer* leaky_relu_1 = network->addActivation(*conv_up1->getOutput(0), ActivationType::kLEAKY_RELU);
leaky_relu_1->setAlpha(0.2);
IResizeLayer* interpolate_nearest2 = network->addResize(*leaky_relu_1->getOutput(0));
float sclaes2[] = { 1, 2, 2 };
interpolate_nearest2->setScales(sclaes2, 3);
interpolate_nearest2->setResizeMode(ResizeMode::kNEAREST);
IConvolutionLayer* conv_up2 = network->addConvolutionNd(*interpolate_nearest2->getOutput(0), 64, DimsHW{ 3, 3 }, weightMap["conv_up2.weight"], weightMap["conv_up2.bias"]);
conv_up2->setStrideNd(DimsHW{ 1, 1 });
conv_up2->setPaddingNd(DimsHW{ 1, 1 });
IActivationLayer* leaky_relu_2 = network->addActivation(*conv_up2->getOutput(0), ActivationType::kLEAKY_RELU);
leaky_relu_2->setAlpha(0.2);
IConvolutionLayer* conv_hr = network->addConvolutionNd(*leaky_relu_2->getOutput(0), 64, DimsHW{ 3, 3 }, weightMap["conv_hr.weight"], weightMap["conv_hr.bias"]);
conv_hr->setStrideNd(DimsHW{ 1, 1 });
conv_hr->setPaddingNd(DimsHW{ 1, 1 });
IActivationLayer* leaky_relu_hr = network->addActivation(*conv_hr->getOutput(0), ActivationType::kLEAKY_RELU);
leaky_relu_hr->setAlpha(0.2);
IConvolutionLayer* conv_last = network->addConvolutionNd(*leaky_relu_hr->getOutput(0), 3, DimsHW{ 3, 3 }, weightMap["conv_last.weight"], weightMap["conv_last.bias"]);
conv_last->setStrideNd(DimsHW{ 1, 1 });
conv_last->setPaddingNd(DimsHW{ 1, 1 });
ITensor* out = conv_last->getOutput(0);
// Custom postprocess (RGB -> BGR, NCHW->NHWC, *255, ROUND, uint8)
Postprocess postprocess{ maxBatchSize, out->getDimensions().d[0], out->getDimensions().d[1], out->getDimensions().d[2] };
IPluginCreator* postprocess_creator = getPluginRegistry()->getPluginCreator("postprocess", "1");
IPluginV2 *postprocess_plugin = postprocess_creator->createPlugin("postprocess_plugin", (PluginFieldCollection*)&postprocess);
IPluginV2Layer* postprocess_layer = network->addPluginV2(&out, 1, *postprocess_plugin);
postprocess_layer->setName("postprocess_layer");
ITensor* final_tensor = postprocess_layer->getOutput(0);
final_tensor->setName(OUTPUT_BLOB_NAME);
network->markOutput(*final_tensor);
// Build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB
if (PRECISION_MODE == 16) {
std::cout << "==== precision f16 ====" << std::endl << std::endl;
config->setFlag(BuilderFlag::kFP16);
}else {
std::cout << "==== precision f32 ====" << std::endl << std::endl;
}
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
delete network;
// Release host memory
for (auto& mem : weightMap)
{
free((void*)(mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, std::string& wts_name) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine *engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, wts_name);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
delete engine;
delete builder;
delete config;
}
void doInference(IExecutionContext& context, cudaStream_t& stream, void **buffers, uint8_t* output, int batchSize) {
// infer on the batch asynchronously, and DMA output back to host
context.enqueue(batchSize, buffers, stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(uint8_t), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
}
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, std::string& img_dir) {
if (argc < 4) return false;
if (std::string(argv[1]) == "-s" && argc == 4) {
wts = std::string(argv[2]);
engine = std::string(argv[3]);
} else if (std::string(argv[1]) == "-d" && argc == 4) {
engine = std::string(argv[2]);
img_dir = std::string(argv[3]);
} else {
return false;
}
return true;
}
// ./real-esrgan -s ./real-esrgan.wts ./real-esrgan_f32.engine
// ./real-esrgan -d ./real-esrgan_f32.engine ../samples
int main(int argc, char** argv) {
std::string wts_name = "";
std::string engine_name = "";
std::string img_dir;
if (!parse_args(argc, argv, wts_name, engine_name, img_dir)) {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./real-esrgan -s [.wts] [.engine] // serialize model to plan file" << std::endl;
std::cerr << "./real-esrgan -d [.engine] ../samples // deserialize plan file and run inference" << std::endl;
return -1;
}
// create a model using the API directly and serialize it to a stream
if (!wts_name.empty()) {
IHostMemory* modelStream{ nullptr };
APIToModel(BATCH_SIZE, &modelStream, wts_name);
assert(modelStream != nullptr);
std::ofstream p(engine_name, std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
delete modelStream;
return 0;
}
// deserialize the .engine and run inference
std::ifstream file(engine_name, std::ios::binary);
if (!file.good()) {
std::cerr << "read " << engine_name << " error!" << std::endl;
return -1;
}
char *trtModelStream = nullptr;
size_t size = 0;
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
std::vector<std::string> file_names;
if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
std::cerr << "read_files_in_dir failed." << std::endl;
return -1;
}
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
delete[] trtModelStream;
assert(engine->getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);
assert(inputIndex == 0);
assert(outputIndex == 1);
// Create GPU buffers on device
CUDA_CHECK(cudaMalloc(&buffers[inputIndex], BATCH_SIZE * INPUT_C * INPUT_H * INPUT_W * sizeof(uint8_t)));
CUDA_CHECK(cudaMalloc(&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(uint8_t)));
std::vector<uint8_t> input(BATCH_SIZE * INPUT_H * INPUT_W * INPUT_C);
std::vector<uint8_t> outputs(BATCH_SIZE * OUTPUT_SIZE);
// Create stream
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
std::vector<cv::Mat> imgs_buffer(BATCH_SIZE);
for (int f = 0; f < (int)file_names.size(); f++) {
for (int b = 0; b < BATCH_SIZE; b++) {
cv::Mat img = cv::imread(img_dir + "/" + file_names[f]);
if (img.empty()) continue;
memcpy(input.data() + b * INPUT_H * INPUT_W * INPUT_C, img.data, INPUT_H * INPUT_W * INPUT_C);
}
CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex], input.data(), BATCH_SIZE * INPUT_C * INPUT_H * INPUT_W * sizeof(uint8_t), cudaMemcpyHostToDevice, stream));
// Run inference
auto start = std::chrono::system_clock::now();
doInference(*context, stream, (void**)buffers, outputs.data(), BATCH_SIZE);
auto end = std::chrono::system_clock::now();
std::cout << "inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
}
cv::Mat frame = cv::Mat(INPUT_H * OUT_SCALE, INPUT_W * OUT_SCALE, CV_8UC3, outputs.data());
cv::imwrite("../_" + file_names[0] + ".png", frame);
if(VISUALIZATION){
cv::imshow("result : " + file_names[0], frame);
cv::waitKey(0);
}
// Release stream and buffers
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(buffers[inputIndex]));
CUDA_CHECK(cudaFree(buffers[outputIndex]));
// Destroy the engine
delete context;
delete engine;
delete runtime;
}