forked from harvard-acc/DeepRecSys
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inferenceEngine.py
239 lines (187 loc) · 8.56 KB
/
inferenceEngine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from __future__ import absolute_import, division, print_function, unicode_literals
from models.dlrm_s_caffe2 import DLRM_Wrapper
from models.wide_and_deep import Wide_and_Deep_Wrapper
from models.ncf import NCF_Wrapper
from models.din import DIN_Wrapper
from models.dien import DIEN_Wrapper
from models.multi_task_wnd import MT_Wide_and_Deep_Wrapper
import numpy as np
from utils.packets import ServiceResponse
# data generation
from data_generator.dlrm_data_caffe2 import DLRMDataGenerator
import threading
from multiprocessing import Queue
from caffe2.proto import caffe2_pb2
from caffe2.python import core,workspace
import time
import sys
import caffe2.python._import_c_extension as C
def run_model(model, args, internal_logging, responseQueue):
top_fc_layers = args.arch_mlp_top.split("-")
fc_tag = "top:::fc" + str(len(top_fc_layers)-1) + "_z"
while True:
if args.model_type == "dlrm":
model.dlrm.run()
elif args.model_type == "wnd":
model.wnd.run()
elif args.model_type == "ncf":
model.ncf.run()
elif args.model_type == "din":
model.din.run()
elif args.model_type == "mtwnd":
model.mtwnd.run()
elif args.model_type == "dien":
model.dien.run()
response = internal_logging.get()
if response == None:
return
inference_end_time = time.time()
response.inference_end_time = inference_end_time
#out_size = np.array(workspace.FetchBlob(fc_tag)).size / int(top_fc_layers[-2])
if args.model_type == "ncf":
ln_top = np.fromstring(args.arch_mlp_top, dtype=int, sep="-")
out_size = np.array(workspace.FetchBlob(model.ncf.tout)).size / ln_top[-1]
else:
out_size = np.array(workspace.FetchBlob(fc_tag)).size / int(top_fc_layers[-2])
response.out_batch_size = out_size
responseQueue.put(response)
def inferenceEngine(args,
requestQueue=None,
engine_id=None,
responseQueue=None,
inferenceEngineReadyQueue=None):
q_inference_logging = Queue()
q_inference_done = Queue()
### some basic setup ###
np.random.seed(args.numpy_rand_seed)
np.set_printoptions(precision=args.print_precision)
# #########################################################################
# Data generation
# - with multiple model implementations this should instantiate the
# particular model class' data generator
# #########################################################################
if args.model_type == "dlrm":
datagen = DLRMDataGenerator(args)
(nbatches, lX, lS_l, lS_i) = datagen.generate_input_data()
(nbatches, lT) = datagen.generate_output_data()
# construct the neural network specified by command line arguments ###
model = DLRM_Wrapper( args )
model.create(lX[0], lS_l[0], lS_i[0], lT[0])
elif args.model_type == "wnd":
datagen = DLRMDataGenerator(args)
(nbatches, lX, lS_l, lS_i) = datagen.generate_input_data()
(nbatches, lT) = datagen.generate_output_data()
model = Wide_and_Deep_Wrapper( args )
model.create(lX[0], lS_l[0], lS_i[0], lT[0])
elif args.model_type == "mtwnd":
datagen = DLRMDataGenerator(args)
(nbatches, lX, lS_l, lS_i) = datagen.generate_input_data()
(nbatches, lT) = datagen.generate_output_data()
# construct the neural network specified by command line arguments ###
model = MT_Wide_and_Deep_Wrapper( args )
model.create(lX[0], lS_l[0], lS_i[0], lT[0])
elif args.model_type == "ncf":
datagen = DLRMDataGenerator(args)
(nbatches, lX, lS_l, lS_i) = datagen.generate_input_data()
(nbatches, lT) = datagen.generate_output_data()
model = NCF_Wrapper( args )
model.create(lX[0], lS_l[0], lS_i[0], lT[0])
elif args.model_type == "din":
datagen = DLRMDataGenerator(args)
(nbatches, lX, lS_l, lS_i) = datagen.generate_input_data()
(nbatches, lT) = datagen.generate_output_data()
model = DIN_Wrapper( args )
model.create(lX[0], lS_l[0], lS_i[0], lT[0])
elif args.model_type == "dien":
datagen = DLRMDataGenerator(args)
(nbatches, lX, lS_l, lS_i) = datagen.generate_input_data()
(nbatches, lT) = datagen.generate_output_data()
# construct the neural network specified by command line arguments ###
model = DIEN_Wrapper( args )
model.create(lX[0], lS_l[0], lS_i[0], lT[0])
if requestQueue == None:
total_time = 0
dload_time = 0
time_start = time.time()
for k in range(args.nepochs):
for j in range(nbatches):
if args.model_type == "dlrm":
time_load_start = time.time()
time_load_end = model.dlrm.run(lX[j], lS_l[j], lS_i[j])
dload_time += (time_load_end - time_load_start)
elif args.model_type == "wnd":
time_load_start = time.time()
time_load_end = model.wnd.run(lX[j], lS_l[j], lS_i[j])
dload_time += (time_load_end - time_load_start)
elif args.model_type == "mtwnd":
time_load_start = time.time()
time_load_end = model.mtwnd.run(lX[j], lS_l[j], lS_i[j])
dload_time += (time_load_end - time_load_start)
elif args.model_type == "ncf":
time_load_start = time.time()
time_load_end = model.ncf.run(lX[j], lS_l[j], lS_i[j])
dload_time += (time_load_end - time_load_start)
elif args.model_type == "din":
model.din.run(lX[j], lS_l[j], lS_i[j])
elif args.model_type == "dien":
model.dien.run(lX[j], lS_l[j], lS_i[j])
time_end = time.time()
dload_time *= 1000.
total_time += (time_end - time_start) * 1000.
print("Total data loading time: ***", dload_time, " ms")
print("Total data loading time: ***", dload_time / (args.nepochs * nbatches), " ms/iter")
print("Total computation time: ***", (total_time - dload_time), " ms")
print("Total computation time: ***", (total_time - dload_time) / (args.nepochs * nbatches), " ms/iter")
print("Total execution time: ***", total_time, " ms")
print("Total execution time: ***", total_time / (args.nepochs * nbatches), " ms/iter")
else:
# Run DLRM model inferences in a separate thread in order to decouple input
# and inference run-times (non-blocking FeedBlob() caffe2 call)
inference_thread = threading.Thread( target=run_model,
args = (model,
args,
q_inference_logging,
responseQueue
)
)
inference_thread.daemon = True
inference_thread.start()
total_time = 0
while True:
inferenceEngineReadyQueue.put(True)
request = requestQueue.get()
if request is None:
time.sleep(4)
q_inference_logging.put(None)
responseQueue.put(None)
return
batch_id = request.batch_id
lS_l_curr = np.transpose(np.array(lS_l[batch_id]))
lS_l_curr = np.transpose(np.array(lS_l_curr[:request.batch_size]))
lS_ids_curr = np.array(lS_i[batch_id])
lS_ids_curr = np.array(lS_ids_curr[:][:, :request.batch_size * args.num_indices_per_lookup])
start_time = time.time()
# Parameterized on batch_size
model.run_queues(lS_ids_curr,
lS_l_curr,
lX[batch_id][:request.batch_size],
request.batch_size
)
end_time = time.time()
response = ServiceResponse( consumer_id = engine_id,
epoch = request.epoch,
batch_id = request.batch_id,
batch_size = request.batch_size,
arrival_time = request.arrival_time,
process_start_time = start_time,
queue_end_time = end_time,
total_sub_batches = request.total_sub_batches,
exp_packet = request.exp_packet,
sub_id = request.sub_id
)
q_inference_logging.put(response)
return
if __name__=="__main__":
from utils.utils import cli
args = cli()
inferenceEngine(args)