-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrun_example.py
154 lines (128 loc) · 3.69 KB
/
run_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import sys
import torch
import torch.nn as nn
import pytorch_lightning as pl
from model import (
SPaRCNet,
ContraWR,
CNNTransformer,
FFCL,
STTransformer,
BIOTClassifier,
UnsupervisedPretrain,
)
# Sample data (batch_size, n_channels, sample_length)
x = torch.randn(64, 16, 2000)
"""
SPaRCNet - 1D CNN DenseNet
ContraWR - Spectrogram + 2D CNN
CNNTransformer - Split into windows + 2D CNN + Transformer
FFCL - CNN + LSTM combined encoder
STTransformer - multilevel Transformer (channel-wise and temporal)
BIOT - biosignal tokenization + Linformer
BIOT-pretrain-PREST - pre-trained BIOT model on 5M EEG data
BIOT-pretrain-SHHS+PREST - pre-trained BIOT model on 5M+5M EEG data
BIOT-pretrain-dix-datasets - pre-trained BIOT model on all six EEG data
"""
model_name = sys.argv[1]
if model_name == "SPaRCNet":
sparcnet = SPaRCNet(
in_channels=16,
sample_length=2000,
n_classes=5,
block_layers=4,
growth_rate=16,
bn_size=16,
drop_rate=0.5,
conv_bias=True,
batch_norm=True,
)
out = sparcnet(x)
print(out.shape)
elif model_name == "ContraWR":
contrawr = ContraWR(in_channels=16, n_classes=5, fft=200, steps=20)
out = contrawr(x)
print(out.shape)
elif model_name == "CNNTransformer":
cnn_transformer = CNNTransformer(
in_channels=16,
n_classes=5,
fft=200,
steps=20,
dropout=0.2,
nhead=4,
emb_size=256,
)
out = cnn_transformer(x)
print(out.shape)
elif model_name == "FFCL":
ffcl = FFCL(
in_channels=16,
n_classes=5,
fft=200,
steps=20,
sample_length=2000,
shrink_steps=20,
)
out = ffcl(x)
print(out.shape)
elif model_name == "STTransformer":
st_transformer = STTransformer(emb_size=256, depth=4, n_classes=5)
out = st_transformer(x)
print(out.shape)
elif model_name == "BIOT":
biot_classifier = BIOTClassifier(
emb_size=256, heads=8, depth=4, n_classes=5, n_fft=200, hop_length=100
)
out = biot_classifier(x)
print(out.shape)
elif model_name == "BIOT-pretrain-PREST":
pretrained_model_path = "pretrained-models/EEG-PREST-16-channels.ckpt"
biot_classifier = BIOTClassifier(
emb_size=256,
heads=8,
depth=4,
n_classes=5,
n_fft=200,
hop_length=100,
n_channels=16, # here is 16
)
biot_classifier.biot.load_state_dict(torch.load(pretrained_model_path))
out = biot_classifier(x)
print(out.shape)
elif model_name == "BIOT-pretrain-SHHS+PREST":
pretrained_model_path = "pretrained-models/EEG-SHHS+PREST-18-channels.ckpt"
biot_classifier = BIOTClassifier(
emb_size=256,
heads=8,
depth=4,
n_classes=5,
n_fft=200,
hop_length=100,
n_channels=18, # here is 18
)
biot_classifier.biot.load_state_dict(torch.load(pretrained_model_path))
out = biot_classifier(x)
print(out.shape)
elif model_name == "BIOT-pretrain-six-datasets":
pretrained_model_path = "pretrained-models/EEG-six-datesets-18-channels.ckpt"
biot_classifier = BIOTClassifier(
emb_size=256,
heads=8,
depth=4,
n_classes=5,
n_fft=200,
hop_length=100,
n_channels=18, # here is 18
)
biot_classifier.biot.load_state_dict(torch.load(pretrained_model_path))
out = biot_classifier(x)
print(out.shape)
elif model_name == "BIOT-unsupervised":
biot_unsupervised = UnsupervisedPretrain(
emb_size=256, heads=8, depth=4, n_channels=18, n_fft=200, hop_length=100
)
out1, out2 = biot_unsupervised(x)
print(out1.shape, out2.shape)
else:
raise NotImplementedError