-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcalculate_inception_moments.py
executable file
·100 lines (91 loc) · 3.78 KB
/
calculate_inception_moments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
''' Calculate Inception Moments
This script iterates over the dataset and calculates the moments of the
activations of the Inception net (needed for FID), and also returns
the Inception Score of the training data.
Note that if you don't shuffle the data, the IS of true data will be under-
estimated as it is label-ordered. By default, the data is not shuffled
so as to reduce non-determinism. '''
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
import inception_utils
from tqdm import tqdm, trange
from argparse import ArgumentParser
import pdb
def prepare_parser():
usage = 'Calculate and store inception metrics.'
parser = ArgumentParser(description=usage)
parser.add_argument(
'--dataset', type=str, default='I128_hdf5',
help='Which Dataset to train on, out of I128, I256, C10, C100...'
'Append _hdf5 to use the hdf5 version of the dataset. (default: %(default)s)')
parser.add_argument(
'--data_root', type=str, default='data',
help='Default location where data is stored (default: %(default)s)')
parser.add_argument(
'--batch_size', type=int, default=64,
help='Default overall batchsize (default: %(default)s)')
parser.add_argument(
'--parallel', action='store_true', default=False,
help='Train with multiple GPUs (default: %(default)s)')
parser.add_argument(
'--augment', action='store_true', default=False,
help='Augment with random crops and flips (default: %(default)s)')
parser.add_argument(
'--num_workers', type=int, default=8,
help='Number of dataloader workers (default: %(default)s)')
parser.add_argument(
'--shuffle', action='store_true', default=False,
help='Shuffle the data? (default: %(default)s)')
parser.add_argument(
'--seed', type=int, default=0,
help='Random seed to use.')
return parser
def run(config):
# Get loader
config['drop_last'] = False
loaders = utils.get_data_loaders(**config)
# Load inception net
net = inception_utils.load_inception_net(parallel=config['parallel'])
pool, logits, labels = [], [], []
device = 'cuda'
for i, (x, y) in enumerate(tqdm(loaders[0])):
try:
x = x.to(device)
with torch.no_grad():
pool_val, logits_val = net(x)
pool += [np.asarray(pool_val.cpu())]
logits += [np.asarray(F.softmax(logits_val, 1).cpu())]
labels += [np.asarray(y.cpu())]
except Exception as e:
x = x.to(device)
with torch.no_grad():
pool_val, logits_val = net(x)
pool += [np.asarray(pool_val.cpu())]
logits += [np.asarray(F.softmax(logits_val, 1).cpu())]
labels += [np.asarray(y.cpu())]
pool, logits, labels = [np.concatenate(item, 0) for item in [pool, logits, labels]]
# uncomment to save pool, logits, and labels to disk
print('Saving pool, logits, and labels to disk...')
np.savez(config['dataset']+'_inception_activations.npz',
{'pool': pool, 'logits': logits, 'labels': labels})
# Calculate inception metrics and report them
print('Calculating inception metrics...')
IS_mean, IS_std = inception_utils.calculate_inception_score(logits)
print('Training data from dataset %s has IS of %5.5f +/- %5.5f' % (config['dataset'], IS_mean, IS_std))
# Prepare mu and sigma, save to disk. Remove "hdf5" by default
# (the FID code also knows to strip "hdf5")
print('Calculating means and covariances...')
mu, sigma = np.mean(pool, axis=0), np.cov(pool, rowvar=False)
print('Saving calculated means and covariances to disk...')
np.savez(config['dataset'].strip('_hdf5')+'_inception_moments.npz', **{'mu' : mu, 'sigma' : sigma})
def main():
# parse command line
parser = prepare_parser()
config = vars(parser.parse_args())
print(config)
run(config)
if __name__ == '__main__':
main()