-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconverter.py
executable file
·402 lines (339 loc) · 17 KB
/
converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
"""Utilities for converting TFHub BigGAN generator weights to PyTorch.
Recommended usage:
To convert all BigGAN variants and generate test samples, use:
```bash
CUDA_VISIBLE_DEVICES=0 python converter.py --generate_samples
```
See `parse_args` for additional options.
"""
import argparse
import os
import sys
import h5py
import torch
import torch.nn as nn
from torchvision.utils import save_image
import tensorflow as tf
import tensorflow_hub as hub
import parse
# import reference biggan from this folder
import biggan_v1 as biggan_for_conversion
# Import model from main folder
sys.path.append('..')
import BigGAN
DEVICE = 'cuda'
HDF5_TMPL = 'biggan-{}.h5'
PTH_TMPL = 'biggan-{}.pth'
MODULE_PATH_TMPL = 'https://tfhub.dev/deepmind/biggan-{}/2'
Z_DIMS = {
128: 120,
256: 140,
512: 128}
RESOLUTIONS = list(Z_DIMS)
def dump_tfhub_to_hdf5(module_path, hdf5_path, redownload=False):
"""Loads TFHub weights and saves them to intermediate HDF5 file.
Args:
module_path ([Path-like]): Path to TFHub module.
hdf5_path ([Path-like]): Path to output HDF5 file.
Returns:
[h5py.File]: Loaded hdf5 file containing module weights.
"""
if os.path.exists(hdf5_path) and (not redownload):
print('Loading BigGAN hdf5 file from:', hdf5_path)
return h5py.File(hdf5_path, 'r')
print('Loading BigGAN module from:', module_path)
tf.reset_default_graph()
hub.Module(module_path)
print('Loaded BigGAN module from:', module_path)
initializer = tf.global_variables_initializer()
sess = tf.Session()
sess.run(initializer)
print('Saving BigGAN weights to :', hdf5_path)
h5f = h5py.File(hdf5_path, 'w')
for var in tf.global_variables():
val = sess.run(var)
h5f.create_dataset(var.name, data=val)
print(f'Saving {var.name} with shape {val.shape}')
h5f.close()
return h5py.File(hdf5_path, 'r')
class TFHub2Pytorch(object):
TF_ROOT = 'module'
NUM_GBLOCK = {
128: 5,
256: 6,
512: 7
}
w = 'w'
b = 'b'
u = 'u0'
v = 'u1'
gamma = 'gamma'
beta = 'beta'
def __init__(self, state_dict, tf_weights, resolution=256, load_ema=True, verbose=False):
self.state_dict = state_dict
self.tf_weights = tf_weights
self.resolution = resolution
self.verbose = verbose
if load_ema:
for name in ['w', 'b', 'gamma', 'beta']:
setattr(self, name, getattr(self, name) + '/ema_b999900')
def load(self):
self.load_generator()
return self.state_dict
def load_generator(self):
GENERATOR_ROOT = os.path.join(self.TF_ROOT, 'Generator')
for i in range(self.NUM_GBLOCK[self.resolution]):
name_tf = os.path.join(GENERATOR_ROOT, 'GBlock')
name_tf += f'_{i}' if i != 0 else ''
self.load_GBlock(f'GBlock.{i}.', name_tf)
self.load_attention('attention.', os.path.join(GENERATOR_ROOT, 'attention'))
self.load_linear('linear', os.path.join(self.TF_ROOT, 'linear'), bias=False)
self.load_snlinear('G_linear', os.path.join(GENERATOR_ROOT, 'G_Z', 'G_linear'))
self.load_colorize('colorize', os.path.join(GENERATOR_ROOT, 'conv_2d'))
self.load_ScaledCrossReplicaBNs('ScaledCrossReplicaBN',
os.path.join(GENERATOR_ROOT, 'ScaledCrossReplicaBN'))
def load_linear(self, name_pth, name_tf, bias=True):
self.state_dict[name_pth + '.weight'] = self.load_tf_tensor(name_tf, self.w).permute(1, 0)
if bias:
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.b)
def load_snlinear(self, name_pth, name_tf, bias=True):
self.state_dict[name_pth + '.module.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
self.state_dict[name_pth + '.module.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
self.state_dict[name_pth + '.module.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(1, 0)
if bias:
self.state_dict[name_pth + '.module.bias'] = self.load_tf_tensor(name_tf, self.b)
def load_colorize(self, name_pth, name_tf):
self.load_snconv(name_pth, name_tf)
def load_GBlock(self, name_pth, name_tf):
self.load_convs(name_pth, name_tf)
self.load_HyperBNs(name_pth, name_tf)
def load_convs(self, name_pth, name_tf):
self.load_snconv(name_pth + 'conv0', os.path.join(name_tf, 'conv0'))
self.load_snconv(name_pth + 'conv1', os.path.join(name_tf, 'conv1'))
self.load_snconv(name_pth + 'conv_sc', os.path.join(name_tf, 'conv_sc'))
def load_snconv(self, name_pth, name_tf, bias=True):
if self.verbose:
print(f'loading: {name_pth} from {name_tf}')
self.state_dict[name_pth + '.module.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
self.state_dict[name_pth + '.module.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
self.state_dict[name_pth + '.module.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(3, 2, 0, 1)
if bias:
self.state_dict[name_pth + '.module.bias'] = self.load_tf_tensor(name_tf, self.b).squeeze()
def load_conv(self, name_pth, name_tf, bias=True):
self.state_dict[name_pth + '.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
self.state_dict[name_pth + '.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
self.state_dict[name_pth + '.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(3, 2, 0, 1)
if bias:
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.b)
def load_HyperBNs(self, name_pth, name_tf):
self.load_HyperBN(name_pth + 'HyperBN', os.path.join(name_tf, 'HyperBN'))
self.load_HyperBN(name_pth + 'HyperBN_1', os.path.join(name_tf, 'HyperBN_1'))
def load_ScaledCrossReplicaBNs(self, name_pth, name_tf):
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.beta).squeeze()
self.state_dict[name_pth + '.weight'] = self.load_tf_tensor(name_tf, self.gamma).squeeze()
self.state_dict[name_pth + '.running_mean'] = self.load_tf_tensor(name_tf + 'bn', 'accumulated_mean')
self.state_dict[name_pth + '.running_var'] = self.load_tf_tensor(name_tf + 'bn', 'accumulated_var')
self.state_dict[name_pth + '.num_batches_tracked'] = torch.tensor(
self.tf_weights[os.path.join(name_tf + 'bn', 'accumulation_counter:0')][()], dtype=torch.float32)
def load_HyperBN(self, name_pth, name_tf):
if self.verbose:
print(f'loading: {name_pth} from {name_tf}')
beta = name_pth + '.beta_embed.module'
gamma = name_pth + '.gamma_embed.module'
self.state_dict[beta + '.weight_u'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.u).squeeze()
self.state_dict[gamma + '.weight_u'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.u).squeeze()
self.state_dict[beta + '.weight_v'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.v).squeeze()
self.state_dict[gamma + '.weight_v'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.v).squeeze()
self.state_dict[beta + '.weight_bar'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.w).permute(1, 0)
self.state_dict[gamma +
'.weight_bar'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.w).permute(1, 0)
cr_bn_name = name_tf.replace('HyperBN', 'CrossReplicaBN')
self.state_dict[name_pth + '.bn.running_mean'] = self.load_tf_tensor(cr_bn_name, 'accumulated_mean')
self.state_dict[name_pth + '.bn.running_var'] = self.load_tf_tensor(cr_bn_name, 'accumulated_var')
self.state_dict[name_pth + '.bn.num_batches_tracked'] = torch.tensor(
self.tf_weights[os.path.join(cr_bn_name, 'accumulation_counter:0')][()], dtype=torch.float32)
def load_attention(self, name_pth, name_tf):
self.load_snconv(name_pth + 'theta', os.path.join(name_tf, 'theta'), bias=False)
self.load_snconv(name_pth + 'phi', os.path.join(name_tf, 'phi'), bias=False)
self.load_snconv(name_pth + 'g', os.path.join(name_tf, 'g'), bias=False)
self.load_snconv(name_pth + 'o_conv', os.path.join(name_tf, 'o_conv'), bias=False)
self.state_dict[name_pth + 'gamma'] = self.load_tf_tensor(name_tf, self.gamma)
def load_tf_tensor(self, prefix, var, device='0'):
name = os.path.join(prefix, var) + f':{device}'
return torch.from_numpy(self.tf_weights[name][:])
# Convert from v1: This function maps
def convert_from_v1(hub_dict, resolution=128):
weightname_dict = {'weight_u': 'u0', 'weight_bar': 'weight', 'bias': 'bias'}
convnum_dict = {'conv0': 'conv1', 'conv1': 'conv2', 'conv_sc': 'conv_sc'}
attention_blocknum = {128: 3, 256: 4, 512: 3}[resolution]
hub2me = {'linear.weight': 'shared.weight', # This is actually the shared weight
# Linear stuff
'G_linear.module.weight_bar': 'linear.weight',
'G_linear.module.bias': 'linear.bias',
'G_linear.module.weight_u': 'linear.u0',
# output layer stuff
'ScaledCrossReplicaBN.weight': 'output_layer.0.gain',
'ScaledCrossReplicaBN.bias': 'output_layer.0.bias',
'ScaledCrossReplicaBN.running_mean': 'output_layer.0.stored_mean',
'ScaledCrossReplicaBN.running_var': 'output_layer.0.stored_var',
'colorize.module.weight_bar': 'output_layer.2.weight',
'colorize.module.bias': 'output_layer.2.bias',
'colorize.module.weight_u': 'output_layer.2.u0',
# Attention stuff
'attention.gamma': 'blocks.%d.1.gamma' % attention_blocknum,
'attention.theta.module.weight_u': 'blocks.%d.1.theta.u0' % attention_blocknum,
'attention.theta.module.weight_bar': 'blocks.%d.1.theta.weight' % attention_blocknum,
'attention.phi.module.weight_u': 'blocks.%d.1.phi.u0' % attention_blocknum,
'attention.phi.module.weight_bar': 'blocks.%d.1.phi.weight' % attention_blocknum,
'attention.g.module.weight_u': 'blocks.%d.1.g.u0' % attention_blocknum,
'attention.g.module.weight_bar': 'blocks.%d.1.g.weight' % attention_blocknum,
'attention.o_conv.module.weight_u': 'blocks.%d.1.o.u0' % attention_blocknum,
'attention.o_conv.module.weight_bar':'blocks.%d.1.o.weight' % attention_blocknum,
}
# Loop over the hub dict and build the hub2me map
for name in hub_dict.keys():
if 'GBlock' in name:
if 'HyperBN' not in name: # it's a conv
out = parse.parse('GBlock.{:d}.{}.module.{}',name)
blocknum, convnum, weightname = out
if weightname not in weightname_dict:
continue # else hyperBN in
out_name = 'blocks.%d.0.%s.%s' % (blocknum, convnum_dict[convnum], weightname_dict[weightname]) # Increment conv number by 1
else: # hyperbn not conv
BNnum = 2 if 'HyperBN_1' in name else 1
if 'embed' in name:
out = parse.parse('GBlock.{:d}.{}.module.{}',name)
blocknum, gamma_or_beta, weightname = out
if weightname not in weightname_dict: # Ignore weight_v
continue
out_name = 'blocks.%d.0.bn%d.%s.%s' % (blocknum, BNnum, 'gain' if 'gamma' in gamma_or_beta else 'bias', weightname_dict[weightname])
else:
out = parse.parse('GBlock.{:d}.{}.bn.{}',name)
blocknum, dummy, mean_or_var = out
if 'num_batches_tracked' in mean_or_var:
continue
out_name = 'blocks.%d.0.bn%d.%s' % (blocknum, BNnum, 'stored_mean' if 'mean' in mean_or_var else 'stored_var')
hub2me[name] = out_name
# Invert the hub2me map
me2hub = {hub2me[item]: item for item in hub2me}
new_dict = {}
dimz_dict = {128: 20, 256: 20, 512:16}
for item in me2hub:
# Swap input dim ordering on batchnorm bois to account for my arbitrary change of ordering when concatenating Ys and Zs
if ('bn' in item and 'weight' in item) and ('gain' in item or 'bias' in item) and ('output_layer' not in item):
new_dict[item] = torch.cat([hub_dict[me2hub[item]][:, -128:], hub_dict[me2hub[item]][:, :dimz_dict[resolution]]], 1)
# Reshape the first linear weight, bias, and u0
elif item == 'linear.weight':
new_dict[item] = hub_dict[me2hub[item]].contiguous().view(4, 4, 96 * 16, -1).permute(2,0,1,3).contiguous().view(-1,dimz_dict[resolution])
elif item == 'linear.bias':
new_dict[item] = hub_dict[me2hub[item]].view(4, 4, 96 * 16).permute(2,0,1).contiguous().view(-1)
elif item == 'linear.u0':
new_dict[item] = hub_dict[me2hub[item]].view(4, 4, 96 * 16).permute(2,0,1).contiguous().view(1, -1)
elif me2hub[item] == 'linear.weight': # THIS IS THE SHARED WEIGHT NOT THE FIRST LINEAR LAYER
# Transpose shared weight so that it's an embedding
new_dict[item] = hub_dict[me2hub[item]].t()
elif 'weight_u' in me2hub[item]: # Unsqueeze u0s
new_dict[item] = hub_dict[me2hub[item]].unsqueeze(0)
else:
new_dict[item] = hub_dict[me2hub[item]]
return new_dict
def get_config(resolution):
attn_dict = {128: '64', 256: '128', 512: '64'}
dim_z_dict = {128: 120, 256: 140, 512: 128}
config = {'G_param': 'SN', 'D_param': 'SN',
'G_ch': 96, 'D_ch': 96,
'D_wide': True, 'G_shared': True,
'shared_dim': 128, 'dim_z': dim_z_dict[resolution],
'hier': True, 'cross_replica': False,
'mybn': False, 'G_activation': nn.ReLU(inplace=True),
'G_attn': attn_dict[resolution],
'norm_style': 'bn',
'G_init': 'ortho', 'skip_init': True, 'no_optim': True,
'G_fp16': False, 'G_mixed_precision': False,
'accumulate_stats': False, 'num_standing_accumulations': 16,
'G_eval_mode': True,
'BN_eps': 1e-04, 'SN_eps': 1e-04,
'num_G_SVs': 1, 'num_G_SV_itrs': 1, 'resolution': resolution,
'n_classes': 1000}
return config
def convert_biggan(resolution, weight_dir, redownload=False, no_ema=False, verbose=False):
module_path = MODULE_PATH_TMPL.format(resolution)
hdf5_path = os.path.join(weight_dir, HDF5_TMPL.format(resolution))
pth_path = os.path.join(weight_dir, PTH_TMPL.format(resolution))
tf_weights = dump_tfhub_to_hdf5(module_path, hdf5_path, redownload=redownload)
G_temp = getattr(biggan_for_conversion, f'Generator{resolution}')()
state_dict_temp = G_temp.state_dict()
converter = TFHub2Pytorch(state_dict_temp, tf_weights, resolution=resolution,
load_ema=(not no_ema), verbose=verbose)
state_dict_v1 = converter.load()
state_dict = convert_from_v1(state_dict_v1, resolution)
# Get the config, build the model
config = get_config(resolution)
G = BigGAN.Generator(**config)
G.load_state_dict(state_dict, strict=False) # Ignore missing sv0 entries
torch.save(state_dict, pth_path)
# output_location ='pretrained_weights/TFHub-PyTorch-128.pth'
return G
def generate_sample(G, z_dim, batch_size, filename, parallel=False):
G.eval()
G.to(DEVICE)
with torch.no_grad():
z = torch.randn(batch_size, G.dim_z).to(DEVICE)
y = torch.randint(low=0, high=1000, size=(batch_size,),
device=DEVICE, dtype=torch.int64, requires_grad=False)
if parallel:
images = nn.parallel.data_parallel(G, (z, G.shared(y)))
else:
images = G(z, G.shared(y))
save_image(images, filename, scale_each=True, normalize=True)
def parse_args():
usage = 'Parser for conversion script.'
parser = argparse.ArgumentParser(description=usage)
parser.add_argument(
'--resolution', '-r', type=int, default=None, choices=[128, 256, 512],
help='Resolution of TFHub module to convert. Converts all resolutions if None.')
parser.add_argument(
'--redownload', action='store_true', default=False,
help='Redownload weights and overwrite current hdf5 file, if present.')
parser.add_argument(
'--weights_dir', type=str, default='pretrained_weights')
parser.add_argument(
'--samples_dir', type=str, default='pretrained_samples')
parser.add_argument(
'--no_ema', action='store_true', default=False,
help='Do not load ema weights.')
parser.add_argument(
'--verbose', action='store_true', default=False,
help='Additionally logging.')
parser.add_argument(
'--generate_samples', action='store_true', default=False,
help='Generate test sample with pretrained model.')
parser.add_argument(
'--batch_size', type=int, default=64,
help='Batch size used for test sample.')
parser.add_argument(
'--parallel', action='store_true', default=False,
help='Parallelize G?')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
os.makedirs(args.weights_dir, exist_ok=True)
os.makedirs(args.samples_dir, exist_ok=True)
if args.resolution is not None:
G = convert_biggan(args.resolution, args.weights_dir,
redownload=args.redownload,
no_ema=args.no_ema, verbose=args.verbose)
if args.generate_samples:
filename = os.path.join(args.samples_dir, f'biggan{args.resolution}_samples.jpg')
print('Generating samples...')
generate_sample(G, Z_DIMS[args.resolution], args.batch_size, filename, args.parallel)
else:
for res in RESOLUTIONS:
G = convert_biggan(res, args.weights_dir,
redownload=args.redownload,
no_ema=args.no_ema, verbose=args.verbose)
if args.generate_samples:
filename = os.path.join(args.samples_dir, f'biggan{res}_samples.jpg')
print('Generating samples...')
generate_sample(G, Z_DIMS[res], args.batch_size, filename, args.parallel)