-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_search_tree.c
182 lines (158 loc) · 3.71 KB
/
binary_search_tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
enum state {False, True};
typedef struct node {
int data;
struct node* left;
struct node* right;
} bst_node;
typedef struct q_node {
int data;
struct q_node* next;
} q_node;
typedef struct queue {
struct q_node* head;
struct q_node* tail;
} queue;
queue* queue() {
queue* q = (queue*) malloc(sizeof(queue));
q->head = NULL;
q->tail = NULL;
}
void enqueue(queue* q, int data) {
q_node* node = (q_node*) malloc(sizeof(q_node));
node->data = data;
node->next = NULL;
if (q->head == NULL && q->tail == NULL) {
q->head = node;
q->tail = node;
} else {
if (q->head == q->tail) {
q->tail = node;
q->head->next = node;
} else {
q->tail->next = node;
q->tail = node;
}
}
}
enum state is_empty(queue* q) {
if (q->head == NULL) {
return True;
}
return False;
};
int dequeue(queue* q) {
if (is_empty(q)) {
return NULL;
}
q_node* head = q->head;
int data = head->data;
if (q->head == q->tail) {
q->tail = NULL;
}
q->head = q->head->next;
free(head);
return data;
}
int size(queue* q) {
if (is_empty(q)) {
return 0;
}
int size = 1;
q_node* node = q->head;
while (node->next != NULL) {
++size;
node = node->next;
}
return size;
}
// This creates a node, its value is the passed in data parameter
bst_node* bst_create(int data) {
bst_node* node = (bst_node*) malloc(sizeof(bst_node));
node->data = data;
node->left = NULL;
node->right = NULL;
return node;
}
void bst_insert(bst_node* node, int data) {
if (data <= node->data) {
if (node->left == NULL) {
node->left = bst_create(data);
} else {
bst_insert(node->left, data);
}
} else {
if (node->right == NULL) {
node->right = bst_create(data);
} else {
bst_insert(node->right, data);
}
}
}
// Whether or not the binary tree contains that data
enum state bst_contains(bst_node* node, int data) {
if (data == node->data) {
return True;
}
if (data > node->data) {
if (node->right == NULL) {
return False;
}
bst_contains(node->right, data);
} else {
if (node->left == NULL) {
return False;
}
bst_contains(node->left, data);
}
};
// Tree traversal: Depth-first search (DFS) and Breadth-first search (BFS)
// These searches are referred to as depth-first search (DFS)
void bst_in_order(bst_node* node) {
if (node->left != NULL) {
bst_in_order(node->left);
}
printf("%d ", node->data);
if (node->right != NULL) {
bst_in_order(node->right);
}
}
void bst_pre_order(bst_node* node) {
printf("%d ", node->data);
if (node->left != NULL) {
bst_pre_order(node->left);
}
if (node->right != NULL) {
bst_pre_order(node->right);
}
}
void bst_post_order(bst_node* node) {
if (node->left != NULL) {
bst_post_order(node->left);
}
if (node->right != NULL) {
bst_post_order(node->right);
}
printf("%d ", node->data);
}
void breadth_first_search(bst_node* node) {
queue* q = queue();
bst_node* p = node;
bst_node* set[10];
int i = 0;
int j = 0;
enqueue(q, p->data);
while ( ! is_empty(q)) {
printf("%d ", dequeue(q));
if (p->left != NULL) {
set[j++] = p->left;
enqueue(q, p->left->data);
}
if (p->right != NULL) {
set[j++] = p->right;
enqueue(q, p->right->data);
}
if (set[i] != NULL) {
p = set[i++];
}
}
}