-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt-2.py
272 lines (222 loc) · 10.1 KB
/
gpt-2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# First load the dataset
import torch
import torch.nn as nn
from dataclasses import dataclass
from torch.nn import functional as F
with open('math.txt', 'r', encoding='utf-8') as f: ## add path to the dataset here.
text = f.read()
chars = sorted(list(set(text))) # possible elements from the dataset.
vocab_size = len(chars)
print(vocab_size)
# Tokenize the set(Character level tokenizer)
string_toInt = {ch: i for i, ch in enumerate(chars)}
int_toString = {i: ch for i, ch in enumerate(chars)}
# Forward and Reverse Mapping(String to Integer). There are different schemes, Google uses sentencepiece,
# OpenAI uses tiktoken
encode = lambda string: [string_toInt[c] for c in string]
decode = lambda lst: ''.join([int_toString[i] for i in lst])
data = torch.tensor(encode(text), dtype=torch.long)
N = int(len(data)*0.9)
trainData = data[N:]
valData = data[:N]
@dataclass
class TuningParameters:
context_length = 10
batch_size = 16
eval_interval = 100
n_embd = 128
dropout = 0.2
n_layer = 20
n_head = 20
max_iters = 500
eval_iters = 50
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
params = TuningParameters()
@torch.no_grad()
def estimate_loss():
"""[Average loss across multiple batches ; Much more resistant to fluctuations.]"""
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(params.eval_iters)
for k in range(params.eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
def get_batch(split):
"""[Batch up the dataset into x and y. Make sure to do the computations on the device]"""
data = trainData if split == 'train' else valData
ix = torch.randint(len(data) - params.context_length, (params.batch_size,)) # random offsets in the dataset.
x = torch.stack([data[i:i+params.context_length] for i in ix])
y = torch.stack([data[i+1: i+params.context_length+1] for i in ix])
x, y = x.to(params.device), y.to(params.device)
return x, y
xb, yb = get_batch('train')
for b in range(params.batch_size):
for t in range(params.context_length):
context = xb[b, :t+1]
target = yb[b, t]
class SelfAttentionHead(nn.Module):
"""[Can't thank Vasvani et. al. for this. It's all I need]"""
def __init__(self, head_size):
super().__init__()
self._key = nn.Linear(params.n_embd, head_size, bias=False)
self._query = nn.Linear(params.n_embd, head_size, bias=False)
self._value = nn.Linear(params.n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(params.context_length, params.context_length)))
def forward(self, x):
B, T, C = x.shape
k = self._key(x) # (B, T, head_size)
q = self._query(x) # (B, T, head_size)
wei = q @ k.transpose(-2, -1) * C**-0.5 # divided by sqrt(head size) to control the variance.
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # TODO: Do not interact with future token.
wei = F.softmax(wei, dim=-1) # TODO: This ensures that the distribution of tokens is normalized.
v = self._value(x)
out = wei @ v # (B, T, T) @ (B, T, C) which gives (B, T, C) matrix !!
return out
class MultiHeadAttention(nn.Module):
""" [Multiple Headed Self Attention in parallel] """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([SelfAttentionHead(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(head_size*num_heads, params.n_embd)
self.dropout = nn.Dropout(params.dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim = -1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
""" [A Linear Layer followed by a Relu and Dropout] """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(params.dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
"""[Transformer block: communication followed by computation]"""
def __init__(self, n_embd, n_head):
super().__init__()
head_size = n_embd//n_head
self.sa = MultiHeadAttention(n_head, head_size) # communication
self.ffwd = FeedForward(n_embd) # computation
def forward(self, x):
x = x+ self.sa(x)
x = x+ self.ffwd(x)
return x
class BigramLanguageModel(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)
self.position_embedding_table = nn.Embedding(params.context_length, params.n_embd)
self.sa_heads = MultiHeadAttention(4, params.n_embd//4) # 4 heads of 8 dimensional self attention
self.lm_head = nn.Linear(params.n_embd, vocab_size)
def forward(self, idx, targets=None):
"""[Index and targets are both batch and time(context) tensor of integers. ]"""
# Logits are basically the scores for the next character in the sequence.
B, T = idx.shape
token_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T))
x = token_emb + pos_emb
x = self.sa_heads(x)
logits = self.lm_head(x) # B, T, vocab_size
# Implement the loss functions. Pytorch needs the Channel thing first.
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -params.context_length]
logits, loss = self(idx_cond)
logits = logits[:, -1, :] # (B,C)
probs = F.softmax(logits, dims=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1) # from (B,T) to (B,T+1) in one iteration.
return idx
class PGLAm(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, params.n_embd)
self.position_embedding_table = nn.Embedding(params.context_length, params.n_embd)
self.blocks = nn.Sequential(*[Block(params.n_embd, n_head=params.n_head) for _ in range(params.n_layer)])
self.ln_f = nn.LayerNorm(params.n_embd) # final layer norm
self.lm_head = nn.Linear(params.n_embd, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=params.device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
# perplexity = torch.exp(loss)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -params.context_length:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
model = PGLAm()
m = model.to(params.device)
print(f'{sum(p.numel() for p in m.parameters())/1e6:.2f} M parameters') # currently, a 3.87M Parameter model.
optimizer = torch.optim.AdamW(model.parameters(), lr=params.learning_rate)
for iter in range(params.max_iters):
# every once in a while evaluate the loss on train and val sets
if iter % params.eval_interval == 0 or iter == params.max_iters - 1:
losses = estimate_loss()
perplexity = torch.exp(losses)
print(f"Step: {iter}, Train Loss: {losses['train']:.4f}, Val Loss: {losses['val']:.4f}, Perplexity: {perplexity.item()}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=params.device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# Uncomment the below line to generate the tokens and write them to the file 'gen_text.txt' as that of 'math.txt' - now 884647, but 69420 also works.
# Ensure that both the texts are of same token length for easier reproducibility of results.
#open('gen_text.txt', 'w').write(decode(m.generate(context, max_new_tokens=69420)[0].tolist()))