-
Notifications
You must be signed in to change notification settings - Fork 86
/
model.py
executable file
·649 lines (498 loc) · 23.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import numpy, os, sys, cPickle
import theano
import theano.tensor as T
import theano.sandbox.rng_mrg as RNG_MRG
import PIL.Image
from collections import OrderedDict
from image_tiler import *
import time
import argparse
cast32 = lambda x : numpy.cast['float32'](x)
trunc = lambda x : str(x)[:8]
logit = lambda p : numpy.log(p / (1 - p) )
binarize = lambda x : cast32(x >= 0.5)
sigmoid = lambda x : cast32(1. / (1 + numpy.exp(-x)))
def SaltAndPepper(X, rate=0.3):
# Salt and pepper noise
drop = numpy.arange(X.shape[1])
numpy.random.shuffle(drop)
sep = int(len(drop)*rate)
drop = drop[:sep]
X[:, drop[:sep/2]]=0
X[:, drop[sep/2:]]=1
return X
def get_shared_weights(n_in, n_out, interval, name):
#val = numpy.random.normal(0, sigma_sqr, size=(n_in, n_out))
val = numpy.random.uniform(-interval, interval, size=(n_in, n_out))
val = cast32(val)
val = theano.shared(value = val, name = name)
return val
def get_shared_bias(n, name, offset = 0):
val = numpy.zeros(n) - offset
val = cast32(val)
val = theano.shared(value = val, name = name)
return val
def load_mnist(path):
data = cPickle.load(open(os.path.join(path,'mnist.pkl'), 'rb'))
return data
def load_mnist_binary(path):
data = cPickle.load(open(os.path.join(path,'mnist.pkl'), 'rb'))
data = [list(d) for d in data]
data[0][0] = (data[0][0] > 0.5).astype('float32')
data[1][0] = (data[1][0] > 0.5).astype('float32')
data[2][0] = (data[2][0] > 0.5).astype('float32')
data = tuple([tuple(d) for d in data])
return data
def load_tfd(path):
import scipy.io as io
data = io.loadmat(os.path.join(path, 'TFD_48x48.mat'))
X = cast32(data['images'])/cast32(255)
X = X.reshape((X.shape[0], X.shape[1] * X.shape[2]))
labels = data['labs_ex'].flatten()
labeled = labels != -1
unlabeled = labels == -1
train_X = X[unlabeled]
valid_X = X[unlabeled][:100] # Stuf
test_X = X[labeled]
del data
return (train_X, labels[unlabeled]), (valid_X, labels[unlabeled][:100]), (test_X, labels[labeled])
def experiment(state, channel):
if state.test_model and 'config' in os.listdir('.'):
print 'Loading local config file'
config_file = open('config', 'r')
config = config_file.readlines()
try:
config_vals = config[0].split('(')[1:][0].split(')')[:-1][0].split(', ')
except:
config_vals = config[0][3:-1].replace(': ','=').replace("'","").split(', ')
config_vals = filter(lambda x:not 'jobman' in x and not '/' in x and not ':' in x and not 'experiment' in x, config_vals)
for CV in config_vals:
print CV
if CV.startswith('test'):
print 'Do not override testing switch'
continue
try:
exec('state.'+CV) in globals(), locals()
except:
exec('state.'+CV.split('=')[0]+"='"+CV.split('=')[1]+"'") in globals(), locals()
else:
# Save the current configuration
# Useful for logs/experiments
print 'Saving config'
f = open('config', 'w')
f.write(str(state))
f.close()
print state
# Load the data, train = train+valid, and shuffle train
# Targets are not used (will be misaligned after shuffling train
if state.dataset == 'MNIST':
(train_X, train_Y), (valid_X, valid_Y), (test_X, test_Y) = load_mnist(state.data_path)
train_X = numpy.concatenate((train_X, valid_X))
elif state.dataset == 'MNIST_binary':
(train_X, train_Y), (valid_X, valid_Y), (test_X, test_Y) = load_mnist_binary(state.data_path)
train_X = numpy.concatenate((train_X, valid_X))
elif state.dataset == 'TFD':
(train_X, train_Y), (valid_X, valid_Y), (test_X, test_Y) = load_tfd(state.data_path)
N_input = train_X.shape[1]
root_N_input = numpy.sqrt(N_input)
numpy.random.seed(1)
numpy.random.shuffle(train_X)
train_X = theano.shared(train_X)
valid_X = theano.shared(valid_X)
test_X = theano.shared(test_X)
# Theano variables and RNG
X = T.fmatrix() # Input of the graph
index = T.lscalar() # index to minibatch
MRG = RNG_MRG.MRG_RandomStreams(1)
# Network and training specifications
K = state.K # number of hidden layers
N = state.N # number of walkbacks
layer_sizes = [N_input] + [state.hidden_size] * K # layer sizes, from h0 to hK (h0 is the visible layer)
learning_rate = theano.shared(cast32(state.learning_rate)) # learning rate
annealing = cast32(state.annealing) # exponential annealing coefficient
momentum = theano.shared(cast32(state.momentum)) # momentum term
# PARAMETERS : weights list and bias list.
# initialize a list of weights and biases based on layer_sizes
weights_list = [get_shared_weights(layer_sizes[i], layer_sizes[i+1], numpy.sqrt(6. / (layer_sizes[i] + layer_sizes[i+1] )), 'W') for i in range(K)]
bias_list = [get_shared_bias(layer_sizes[i], 'b') for i in range(K + 1)]
if state.test_model:
# Load the parameters of the last epoch
# maybe if the path is given, load these specific attributes
param_files = filter(lambda x:'params' in x, os.listdir('.'))
max_epoch_idx = numpy.argmax([int(x.split('_')[-1].split('.')[0]) for x in param_files])
params_to_load = param_files[max_epoch_idx]
PARAMS = cPickle.load(open(params_to_load,'r'))
[p.set_value(lp.get_value(borrow=False)) for lp, p in zip(PARAMS[:len(weights_list)], weights_list)]
[p.set_value(lp.get_value(borrow=False)) for lp, p in zip(PARAMS[len(weights_list):], bias_list)]
# Util functions
def dropout(IN, p = 0.5):
noise = MRG.binomial(p = p, n = 1, size = IN.shape, dtype='float32')
OUT = (IN * noise) / cast32(p)
return OUT
def add_gaussian_noise(IN, std = 1):
print 'GAUSSIAN NOISE : ', std
noise = MRG.normal(avg = 0, std = std, size = IN.shape, dtype='float32')
OUT = IN + noise
return OUT
def corrupt_input(IN, p = 0.5):
# salt and pepper? masking?
noise = MRG.binomial(p = p, n = 1, size = IN.shape, dtype='float32')
IN = IN * noise
return IN
def salt_and_pepper(IN, p = 0.2):
# salt and pepper noise
print 'DAE uses salt and pepper noise'
a = MRG.binomial(size=IN.shape, n=1,
p = 1 - p,
dtype='float32')
b = MRG.binomial(size=IN.shape, n=1,
p = 0.5,
dtype='float32')
c = T.eq(a,0) * b
return IN * a + c
# Odd layer update function
# just a loop over the odd layers
def update_odd_layers(hiddens, noisy):
for i in range(1, K+1, 2):
print i
if noisy:
simple_update_layer(hiddens, None, i)
else:
simple_update_layer(hiddens, None, i, add_noise = False)
# Even layer update
# p_X_chain is given to append the p(X|...) at each update (one update = odd update + even update)
def update_even_layers(hiddens, p_X_chain, noisy):
for i in range(0, K+1, 2):
print i
if noisy:
simple_update_layer(hiddens, p_X_chain, i)
else:
simple_update_layer(hiddens, p_X_chain, i, add_noise = False)
# The layer update function
# hiddens : list containing the symbolic theano variables [visible, hidden1, hidden2, ...]
# layer_update will modify this list inplace
# p_X_chain : list containing the successive p(X|...) at each update
# update_layer will append to this list
# add_noise : pre and post activation gaussian noise
def simple_update_layer(hiddens, p_X_chain, i, add_noise=True):
# Compute the dot product, whatever layer
post_act_noise = 0
if i == 0:
hiddens[i] = T.dot(hiddens[i+1], weights_list[i].T) + bias_list[i]
elif i == K:
hiddens[i] = T.dot(hiddens[i-1], weights_list[i-1]) + bias_list[i]
else:
# next layer : layers[i+1], assigned weights : W_i
# previous layer : layers[i-1], assigned weights : W_(i-1)
hiddens[i] = T.dot(hiddens[i+1], weights_list[i].T) + T.dot(hiddens[i-1], weights_list[i-1]) + bias_list[i]
# Add pre-activation noise if NOT input layer
if i==1 and state.noiseless_h1:
print '>>NO noise in first layer'
add_noise = False
# pre activation noise
if i != 0 and add_noise:
print 'Adding pre-activation gaussian noise'
hiddens[i] = add_gaussian_noise(hiddens[i], state.hidden_add_noise_sigma)
# ACTIVATION!
if i == 0:
print 'Sigmoid units'
hiddens[i] = T.nnet.sigmoid(hiddens[i])
else:
print 'Hidden units'
hiddens[i] = hidden_activation(hiddens[i])
# post activation noise
if i != 0 and add_noise:
print 'Adding post-activation gaussian noise'
hiddens[i] = add_gaussian_noise(hiddens[i], state.hidden_add_noise_sigma)
# build the reconstruction chain
if i == 0:
# if input layer -> append p(X|...)
p_X_chain.append(hiddens[i])
# sample from p(X|...)
if state.input_sampling:
print 'Sampling from input'
sampled = MRG.binomial(p = hiddens[i], size=hiddens[i].shape, dtype='float32')
else:
print '>>NO input sampling'
sampled = hiddens[i]
# add noise
sampled = salt_and_pepper(sampled, state.input_salt_and_pepper)
# set input layer
hiddens[i] = sampled
def update_layers(hiddens, p_X_chain, noisy = True):
print 'odd layer update'
update_odd_layers(hiddens, noisy)
print
print 'even layer update'
update_even_layers(hiddens, p_X_chain, noisy)
''' F PROP '''
if state.act == 'sigmoid':
print 'Using sigmoid activation'
hidden_activation = T.nnet.sigmoid
elif state.act == 'rectifier':
print 'Using rectifier activation'
hidden_activation = lambda x : T.maximum(cast32(0), x)
elif state.act == 'tanh':
hidden_activation = lambda x : T.tanh(x)
''' Corrupt X '''
X_corrupt = salt_and_pepper(X, state.input_salt_and_pepper)
''' hidden layer init '''
hiddens = [X_corrupt]
p_X_chain = []
print "Hidden units initialization"
for w,b in zip(weights_list, bias_list[1:]):
# init with zeros
print "Init hidden units at zero before creating the graph"
hiddens.append(T.zeros_like(T.dot(hiddens[-1], w)))
# The layer update scheme
print "Building the graph :", N,"updates"
for i in range(N):
update_layers(hiddens, p_X_chain)
# COST AND GRADIENTS
print 'Cost w.r.t p(X|...) at every step in the graph'
#COST = T.mean(T.nnet.binary_crossentropy(reconstruction, X))
COST = [T.mean(T.nnet.binary_crossentropy(rX, X)) for rX in p_X_chain]
#COST = [T.mean(T.sqr(rX-X)) for rX in p_X_chain]
show_COST = COST[-1]
COST = numpy.sum(COST)
#COST = T.mean(COST)
params = weights_list + bias_list
gradient = T.grad(COST, params)
gradient_buffer = [theano.shared(numpy.zeros(x.get_value().shape, dtype='float32')) for x in params]
m_gradient = [momentum * gb + (cast32(1) - momentum) * g for (gb, g) in zip(gradient_buffer, gradient)]
g_updates = [(p, p - learning_rate * mg) for (p, mg) in zip(params, m_gradient)]
b_updates = zip(gradient_buffer, m_gradient)
updates = OrderedDict(g_updates + b_updates)
f_cost = theano.function(inputs = [X], outputs = show_COST)
indexed_batch = train_X[index * state.batch_size : (index+1) * state.batch_size]
sampled_batch = MRG.binomial(p = indexed_batch, size = indexed_batch.shape, dtype='float32')
f_learn = theano.function(inputs = [index],
updates = updates,
givens = {X : indexed_batch},
outputs = show_COST)
f_test = theano.function(inputs = [X],
outputs = [X_corrupt] + hiddens[0] + p_X_chain,
on_unused_input = 'warn')
#############
# Denoise some numbers : show number, noisy number, reconstructed number
#############
import random as R
R.seed(1)
random_idx = numpy.array(R.sample(range(len(test_X.get_value())), 100))
numbers = test_X.get_value()[random_idx]
f_noise = theano.function(inputs = [X], outputs = salt_and_pepper(X, state.input_salt_and_pepper))
noisy_numbers = f_noise(test_X.get_value()[random_idx])
# Recompile the graph without noise for reconstruction function
hiddens_R = [X]
p_X_chain_R = []
for w,b in zip(weights_list, bias_list[1:]):
# init with zeros
hiddens_R.append(T.zeros_like(T.dot(hiddens_R[-1], w)))
# The layer update scheme
for i in range(N):
update_layers(hiddens_R, p_X_chain_R, noisy=False)
f_recon = theano.function(inputs = [X], outputs = p_X_chain_R[-1])
############
# Sampling #
############
# the input to the sampling function
network_state_input = [X] + [T.fmatrix() for i in range(K)]
# "Output" state of the network (noisy)
# initialized with input, then we apply updates
#network_state_output = network_state_input
network_state_output = [X] + network_state_input[1:]
visible_pX_chain = []
# ONE update
update_layers(network_state_output, visible_pX_chain, noisy=True)
if K == 1:
f_sample_simple = theano.function(inputs = [X], outputs = visible_pX_chain[-1])
# WHY IS THERE A WARNING????
# because the first odd layers are not used -> directly computed FROM THE EVEN layers
# unused input = warn
f_sample2 = theano.function(inputs = network_state_input, outputs = network_state_output + visible_pX_chain, on_unused_input='warn')
def sample_some_numbers_single_layer():
x0 = test_X.get_value()[:1]
samples = [x0]
x = f_noise(x0)
for i in range(399):
x = f_sample_simple(x)
samples.append(x)
x = numpy.random.binomial(n=1, p=x, size=x.shape).astype('float32')
x = f_noise(x)
return numpy.vstack(samples)
def sampling_wrapper(NSI):
out = f_sample2(*NSI)
NSO = out[:len(network_state_output)]
vis_pX_chain = out[len(network_state_output):]
return NSO, vis_pX_chain
def sample_some_numbers(N=400):
# The network's initial state
init_vis = test_X.get_value()[:1]
noisy_init_vis = f_noise(init_vis)
network_state = [[noisy_init_vis] + [numpy.zeros((1,len(b.get_value())), dtype='float32') for b in bias_list[1:]]]
visible_chain = [init_vis]
noisy_h0_chain = [noisy_init_vis]
for i in range(N-1):
# feed the last state into the network, compute new state, and obtain visible units expectation chain
net_state_out, vis_pX_chain = sampling_wrapper(network_state[-1])
# append to the visible chain
visible_chain += vis_pX_chain
# append state output to the network state chain
network_state.append(net_state_out)
noisy_h0_chain.append(net_state_out[0])
return numpy.vstack(visible_chain), numpy.vstack(noisy_h0_chain)
def plot_samples(epoch_number):
to_sample = time.time()
if K == 1:
# one layer model
V = sample_some_numbers_single_layer()
else:
V, H0 = sample_some_numbers()
img_samples = PIL.Image.fromarray(tile_raster_images(V, (root_N_input,root_N_input), (20,20)))
fname = 'samples_epoch_'+str(epoch_number)+'.png'
img_samples.save(fname)
print 'Took ' + str(time.time() - to_sample) + ' to sample 400 numbers'
##############
# Inpainting #
##############
def inpainting(digit):
# The network's initial state
# NOISE INIT
init_vis = cast32(numpy.random.uniform(size=digit.shape))
#noisy_init_vis = f_noise(init_vis)
#noisy_init_vis = cast32(numpy.random.uniform(size=init_vis.shape))
# INDEXES FOR VISIBLE AND NOISY PART
noise_idx = (numpy.arange(N_input) % root_N_input < (root_N_input/2))
fixed_idx = (numpy.arange(N_input) % root_N_input > (root_N_input/2))
# function to re-init the visible to the same noise
# FUNCTION TO RESET HALF VISIBLE TO DIGIT
def reset_vis(V):
V[0][fixed_idx] = digit[0][fixed_idx]
return V
# INIT DIGIT : NOISE and RESET HALF TO DIGIT
init_vis = reset_vis(init_vis)
network_state = [[init_vis] + [numpy.zeros((1,len(b.get_value())), dtype='float32') for b in bias_list[1:]]]
visible_chain = [init_vis]
noisy_h0_chain = [init_vis]
for i in range(49):
# feed the last state into the network, compute new state, and obtain visible units expectation chain
net_state_out, vis_pX_chain = sampling_wrapper(network_state[-1])
# reset half the digit
net_state_out[0] = reset_vis(net_state_out[0])
vis_pX_chain[0] = reset_vis(vis_pX_chain[0])
# append to the visible chain
visible_chain += vis_pX_chain
# append state output to the network state chain
network_state.append(net_state_out)
noisy_h0_chain.append(net_state_out[0])
return numpy.vstack(visible_chain), numpy.vstack(noisy_h0_chain)
def save_params(n, params):
print 'saving parameters...'
save_path = 'params_epoch_'+str(n)+'.pkl'
f = open(save_path, 'wb')
try:
cPickle.dump(params, f, protocol=cPickle.HIGHEST_PROTOCOL)
finally:
f.close()
# TRAINING
n_epoch = state.n_epoch
batch_size = state.batch_size
STOP = False
counter = 0
train_costs = []
valid_costs = []
test_costs = []
if state.vis_init:
bias_list[0].set_value(logit(numpy.clip(0.9,0.001,train_X.get_value().mean(axis=0))))
if state.test_model:
# If testing, do not train and go directly to generating samples, parzen window estimation, and inpainting
print 'Testing : skip training'
STOP = True
while not STOP:
counter += 1
t = time.time()
print counter,'\t',
#train
train_cost = []
for i in range(len(train_X.get_value(borrow=True)) / batch_size):
#train_cost.append(f_learn(train_X[i * batch_size : (i+1) * batch_size]))
#training_idx = numpy.array(range(i*batch_size, (i+1)*batch_size), dtype='int32')
train_cost.append(f_learn(i))
train_cost = numpy.mean(train_cost)
train_costs.append(train_cost)
print 'Train : ',trunc(train_cost), '\t',
#valid
valid_cost = []
for i in range(len(valid_X.get_value(borrow=True)) / 100):
valid_cost.append(f_cost(valid_X.get_value()[i * 100 : (i+1) * batch_size]))
valid_cost = numpy.mean(valid_cost)
#valid_cost = 123
valid_costs.append(valid_cost)
print 'Valid : ', trunc(valid_cost), '\t',
#test
test_cost = []
for i in range(len(test_X.get_value(borrow=True)) / 100):
test_cost.append(f_cost(test_X.get_value()[i * 100 : (i+1) * batch_size]))
test_cost = numpy.mean(test_cost)
test_costs.append(test_cost)
print 'Test : ', trunc(test_cost), '\t',
if counter >= n_epoch:
STOP = True
print 'time : ', trunc(time.time() - t),
print 'MeanVisB : ', trunc(bias_list[0].get_value().mean()),
print 'W : ', [trunc(abs(w.get_value(borrow=True)).mean()) for w in weights_list]
if (counter % 5) == 0:
# Checking reconstruction
reconstructed = f_recon(noisy_numbers)
# Concatenate stuff
stacked = numpy.vstack([numpy.vstack([numbers[i*10 : (i+1)*10], noisy_numbers[i*10 : (i+1)*10], reconstructed[i*10 : (i+1)*10]]) for i in range(10)])
number_reconstruction = PIL.Image.fromarray(tile_raster_images(stacked, (root_N_input,root_N_input), (10,30)))
#epoch_number = reduce(lambda x,y : x + y, ['_'] * (4-len(str(counter)))) + str(counter)
number_reconstruction.save('number_reconstruction'+str(counter)+'.png')
#sample_numbers(counter, 'seven')
plot_samples(counter)
#save params
save_params(counter, params)
# ANNEAL!
new_lr = learning_rate.get_value() * annealing
learning_rate.set_value(new_lr)
# Save
state.train_costs = train_costs
state.valid_costs = valid_costs
state.test_costs = test_costs
# if test
# 10k samples
print 'Generating 10,000 samples'
samples, _ = sample_some_numbers(N=10000)
f_samples = 'samples.npy'
numpy.save(f_samples, samples)
print 'saved digits'
# parzen
print 'Evaluating parzen window'
import likelihood_estimation_parzen
likelihood_estimation_parzen.main(0.20,'mnist')
# Inpainting
print 'Inpainting'
test_X = test_X.get_value()
numpy.random.seed(2)
test_idx = numpy.arange(len(test_Y))
for Iter in range(10):
numpy.random.shuffle(test_idx)
test_X = test_X[test_idx]
test_Y = test_Y[test_idx]
digit_idx = [(test_Y==i).argmax() for i in range(10)]
inpaint_list = []
for idx in digit_idx:
DIGIT = test_X[idx:idx+1]
V_inpaint, H_inpaint = inpainting(DIGIT)
inpaint_list.append(V_inpaint)
INPAINTING = numpy.vstack(inpaint_list)
plot_inpainting = PIL.Image.fromarray(tile_raster_images(INPAINTING, (root_N_input,root_N_input), (10,50)))
fname = 'inpainting_'+str(Iter)+'.png'
#fname = os.path.join(state.model_path, fname)
plot_inpainting.save(fname)
if False and __name__ == "__main__":
os.system('eog inpainting.png')
if __name__ == '__main__':
import ipdb; ipdb.set_trace()
return