-
Notifications
You must be signed in to change notification settings - Fork 23
/
utils.py
executable file
·456 lines (373 loc) · 16.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from scipy.sparse.linalg.eigen.arpack import eigsh
import sys
from scipy.sparse.linalg import norm as sparsenorm
from scipy.linalg import qr
# from sklearn.metrics import f1_score
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
#
# def calc_f1(y_true, y_pred):
# y_true = np.argmax(y_true, axis=1)
# y_pred = np.argmax(y_pred, axis=1)
# return f1_score(y_true, y_pred, average="micro"), f1_score(y_true, y_pred, average="macro")
#
#
# def load_data(dataset_str):
# """Load data."""
# names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
# objects = []
# for i in range(len(names)):
# with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
# if sys.version_info > (3, 0):
# objects.append(pkl.load(f, encoding='latin1'))
# else:
# objects.append(pkl.load(f))
#
# x, y, tx, ty, allx, ally, graph = tuple(objects)
# test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
# test_idx_range = np.sort(test_idx_reorder)
#
# if dataset_str == 'citeseer':
# # Fix citeseer dataset (there are some isolated nodes in the graph)
# # Find isolated nodes, add them as zero-vecs into the right position
# test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
# tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
# tx_extended[test_idx_range-min(test_idx_range), :] = tx
# tx = tx_extended
# ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
# ty_extended[test_idx_range-min(test_idx_range), :] = ty
# ty = ty_extended
#
# features = sp.vstack((allx, tx)).tolil()
# features[test_idx_reorder, :] = features[test_idx_range, :]
# adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
#
# labels = np.vstack((ally, ty))
# labels[test_idx_reorder, :] = labels[test_idx_range, :]
#
# idx_test = test_idx_range.tolist()
# idx_train = range(len(y))
# idx_val = range(len(y), len(y)+500)
#
# train_mask = sample_mask(idx_train, labels.shape[0])
# val_mask = sample_mask(idx_val, labels.shape[0])
# test_mask = sample_mask(idx_test, labels.shape[0])
#
# y_train = np.zeros(labels.shape)
# y_val = np.zeros(labels.shape)
# y_test = np.zeros(labels.shape)
# y_train[train_mask, :] = labels[train_mask, :]
# y_val[val_mask, :] = labels[val_mask, :]
# y_test[test_mask, :] = labels[test_mask, :]
#
# return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
#
def load_data(dataset_str):
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(ally)-500)
idx_val = range(len(ally)-500, len(ally))
train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0])
y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :]
return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
def load_data_original(dataset_str):
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'adj']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, adj = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
#adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
features = sp.identity(features.shape[0])
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500)
train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0])
y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :]
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
def load_corpus(dataset_str):
"""
Loads input corpus from gcn/data directory
ind.dataset_str.x => the feature vectors of the training docs as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.tx => the feature vectors of the test docs as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training docs/words
(a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.y => the one-hot labels of the labeled training docs as numpy.ndarray object;
ind.dataset_str.ty => the one-hot labels of the test docs as numpy.ndarray object;
ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
ind.dataset_str.adj => adjacency matrix of word/doc nodes as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.train.index => the indices of training docs in original doc list.
All objects above must be saved using python pickle module.
:param dataset_str: Dataset name
:return: All data input files loaded (as well the training/test data).
"""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'adj']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, adj = tuple(objects)
print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape)
features = sp.vstack((allx, tx)).tolil()
features = sp.identity(features.shape[0])
labels = np.vstack((ally, ty))
print(len(labels))
train_idx_orig = parse_index_file(
"data/{}.train.index".format(dataset_str))
train_size = len(train_idx_orig)
val_size = train_size - x.shape[0]
test_size = tx.shape[0]
idx_train = range(len(y))
idx_val = range(len(y), len(y) + val_size)
idx_test = range(allx.shape[0], allx.shape[0] + test_size)
idx_vocab = range(train_size, allx.shape[0])
train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0])
vocab_mask = sample_mask(idx_vocab, labels.shape[0])
y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_vocab = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :]
y_vocab[vocab_mask, :] = labels[vocab_mask, :]
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
return adj, features, y_train, y_val, y_test, y_vocab, train_mask, val_mask, test_mask, vocab_mask, train_size, test_size
def load_pmi_graph(dataset):
# load pmi graph
names = ['allx', 'adj']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
allx, adj = tuple(objects)
features = sp.vstack(allx).tolil()
return adj, features
def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape
if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx)
return sparse_mx
def nontuple_preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return sparse_to_tuple(features)
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def nontuple_preprocess_adj(adj):
if adj.shape[0] == adj.shape[1]:
adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj)
else:
rowsum = np.array(adj.sum(1))
rowdegree_inv = np.power(rowsum, -0.5).flatten()
rowdegree_inv[np.isinf(rowdegree_inv)] = 0.
rowdegree_mat_inv = sp.diags(rowdegree_inv)
colsum = np.array(adj.sum(0))
coldegree_inv = np.power(colsum, -0.5).flatten()
coldegree_inv[np.isinf(coldegree_inv)] = 0.
coldegree_mat_inv = sp.diags(coldegree_inv)
adj_normalized = rowdegree_mat_inv.dot(adj).dot(coldegree_mat_inv).tocoo()
# adj_normalized = sp.eye(adj.shape[0]) + normalize_adj(adj)
return adj_normalized.tocsr()
def column_prop(adj):
column_norm = sparsenorm(adj, axis=0)
# column_norm = pow(sparsenorm(adj, axis=0),2)
norm_sum = sum(column_norm)
return column_norm/norm_sum
def mix_prop(adj, features, sparseinputs=False):
adj_column_norm = sparsenorm(adj, axis=0)
if sparseinputs:
features_row_norm = sparsenorm(features, axis=1)
else:
features_row_norm = np.linalg.norm(features, axis=1)
mix_norm = adj_column_norm*features_row_norm
norm_sum = sum(mix_norm)
return mix_norm / norm_sum
def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
# adj_appr = np.array(sp.csr_matrix.todense(adj))
# # adj_appr = dense_lanczos(adj_appr, 100)
# adj_appr = dense_RandomSVD(adj_appr, 100)
# if adj_appr.sum(1).min()<0:
# adj_appr = adj_appr- (adj_appr.sum(1).min()-0.5)*sp.eye(adj_appr.shape[0])
# else:
# adj_appr = adj_appr + sp.eye(adj_appr.shape[0])
# adj_normalized = normalize_adj(adj_appr)
# adj_normalized = normalize_adj(adj+sp.eye(adj.shape[0]))
# adj_appr = np.array(sp.coo_matrix.todense(adj_normalized))
# # adj_normalized = dense_RandomSVD(adj_appr,100)
# adj_normalized = dense_lanczos(adj_appr, 100)
adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj)
# adj_normalized = sp.eye(adj.shape[0]) + normalize_adj(adj)
return sparse_to_tuple(adj_normalized)
from lanczos import lanczos
def dense_lanczos(A,K):
q = np.random.randn(A.shape[0], )
Q, sigma = lanczos(A, K, q)
A2 = np.dot(Q[:,:K], np.dot(sigma[:K,:K], Q[:,:K].T))
return sp.csr_matrix(A2)
def sparse_lanczos(A,k):
q = sp.random(A.shape[0],1)
n = A.shape[0]
Q = sp.lil_matrix(np.zeros((n,k+1)))
A = sp.lil_matrix(A)
Q[:,0] = q/sparsenorm(q)
alpha = 0
beta = 0
for i in range(k):
if i == 0:
q = A*Q[:,i]
else:
q = A*Q[:,i] - beta*Q[:,i-1]
alpha = q.T*Q[:,i]
q = q - Q[:,i]*alpha
q = q - Q[:,:i]*Q[:,:i].T*q # full reorthogonalization
beta = sparsenorm(q)
Q[:,i+1] = q/beta
print(i)
Q = Q[:,:k]
Sigma = Q.T*A*Q
A2 = Q[:,:k]*Sigma[:k,:k]*Q[:,:k].T
return A2
# return Q, Sigma
def dense_RandomSVD(A,K):
G = np.random.randn(A.shape[0],K)
B = np.dot(A,G)
Q,R =qr(B,mode='economic')
M = np.dot(Q, np.dot(Q.T, A))
return sp.csr_matrix(M)
def construct_feed_dict(features, support, labels, labels_mask, placeholders):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['labels']: labels})
feed_dict.update({placeholders['labels_mask']: labels_mask})
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['support'][i]: support[i] for i in range(len(support))})
feed_dict.update({placeholders['num_features_nonzero']: features[1].shape})
return feed_dict
def chebyshev_polynomials(adj, k):
"""Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation)."""
print("Calculating Chebyshev polynomials up to order {}...".format(k))
adj_normalized = normalize_adj(adj)
laplacian = sp.eye(adj.shape[0]) - adj_normalized
largest_eigval, _ = eigsh(laplacian, 1, which='LM')
scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0])
t_k = list()
t_k.append(sp.eye(adj.shape[0]))
t_k.append(scaled_laplacian)
def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
s_lap = sp.csr_matrix(scaled_lap, copy=True)
return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two
for i in range(2, k+1):
t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian))
return sparse_to_tuple(t_k)