-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
299 lines (251 loc) · 18.8 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
from config import Constants
import os
import pickle
from misc.utils import load_yaml
from models.Predictor import (
add_predictor_specific_args,
check_predictor_args,
)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dataset', type=str, default='MSRVTT', choices=['MSVD', 'MSRVTT', 'VATEX'])
parser.add_argument('-m', '--modality', type=str, default='mi')
parser.add_argument('-scope', '--scope', type=str, default='')
parser.add_argument('-method', '--method', type=str, default='', help='method to use, defined in config/methods.yaml')
parser.add_argument('-task', '--task', type=str, default='', help='task to use, defined in config/tasks.yaml')
parser.add_argument('-feats', '--feats', type=str, default='', help='features to use, defined in config/feats.yaml')
parser.add_argument('-arch', '--arch', type=str, default='base', help='architecture to use, defined in config/feats.yaml')
parser.add_argument('-setup', '--setup', type=str, default='naive', help='training setup to use, defined in config/setups.yaml')
# the following arguments may be overrided by the config in specified method
parser.add_argument('--encoder', type=str, default='Embedder', help='encoder to use')
parser.add_argument('--decoder', type=str, default='TransformerDecoder', help='decoder to use')
parser.add_argument('--cls_head', type=str, default='NaiveHead', help='classification head to use')
parser.add_argument('--decoding_type', type=str, default='ARFormer', help='ARFormer | NARFormer')
parser.add_argument('--fusion', type=str, default='temporal_concat', help='temporal_concat | addition')
parser = add_predictor_specific_args(parser)
model = parser.add_argument_group(title='Common Model Settings')
model.add_argument('--dim_hidden', type=int, default=512, help='size of the hidden layer')
model.add_argument('--encoder_dropout_prob', type=float, default=0.5, help='strength of dropout in the encoder')
model.add_argument('--hidden_dropout_prob', type=float, default=0.5, help='strength of dropout in the decoder')
model.add_argument('-wc', '--with_category', default=False, action='store_true',
help='specified for the MSRVTT dataset, use category tags or not')
model.add_argument('--num_category', type=int, default=20)
model.add_argument('--use_category_embs', default=False, action='store_true')
model.add_argument('--dim_category', type=int, default=300)
model.add_argument('--pretrained_embs_path', type=str, default='',
help='path to load pretrained word embs, which will be fixed if specified; '
'default to empty string, i.e., the model uses trainable word embs of dimension `dim_hidden`')
model.add_argument('--load_model_weights_from', type=str, default='',
help='if specified, initializing the model with specific checkpoint file (not strict)')
model.add_argument('--load_strictly', default=False, action='store_true')
model.add_argument('--freeze_parameters_except', type=str, default=[], nargs='+',
help='when `load_model_weights_from` is True, specified parameters will not be frozen during training; '
'if not specified (default), all paramters are trainable')
model.add_argument('--with_backbones', type=str, nargs='+', default=[])
model_tf = parser.add_argument_group(title='Transformer Model Settings')
model_tf.add_argument('--transformer_pre_ln', default=False, action='store_true',
help='refer to `On Layer Normalization in the Transformer Architecture` http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf')
model_tf.add_argument('--trainable_pe', default=False, action='store_true', help='use fixed (default) or trainable positional embs')
model_tf.add_argument('--mha_exclude_bias', default=False, action='store_true')
model_tf.add_argument('-nel', '--num_hidden_layers_encoder', type=int, default=1)
model_tf.add_argument('-ndl', '--num_hidden_layers_decoder', type=int, default=1)
model_tf.add_argument('--num_attention_heads', type=int, default=8)
model_tf.add_argument('--intermediate_size', type=int, default=2048)
model_tf.add_argument('--hidden_act', type=str, default='relu')
model_tf.add_argument('--attention_probs_dropout_prob', type=float, default=0.1)
model_tf.add_argument('--layer_norm_eps', type=float, default=1e-12)
model_tf.add_argument('--watch', type=int, default=0)
model_tf.add_argument('--pos_attention', default=False, action='store_true')
model_tf.add_argument('--enhance_input', type=int, default=2,
help='for NA decoding, 0: without R | 1: re-sampling(R)) | 2: meanpooling(R), default to 2',
choices=[0, 1, 2])
model_rnn = parser.add_argument_group(title='RNN Model Settings')
model_rnn.add_argument('--rnn_type', default='lstm', type=str, help='the basic unit of RNN based decoders', choices=['lstm', 'gru'])
model_rnn.add_argument('--with_multileval_attention', default=False, action='store_true',
help='also known as multimodal attention or attentional attention')
model_rnn.add_argument('--feats_share_weights', default=False, action='store_true',
help='in temporal attention, share the weights of different features or not')
training = parser.add_argument_group(title='Common Training Settings')
training.add_argument('-gpus', '--gpus', default=1, type=int,
help='the number of gpus to use, only support 0 (cpu) and 1 now', choices=[0, 1])
training.add_argument('-seed', '--seed', default=0, type=int, help='for reproducibility')
training.add_argument('-e', '--epochs', type=int, default=50, help='number of epochs')
training.add_argument('-b', '--batch_size', type=int, default=64, help='minibatch size')
training.add_argument('--max_steps', type=int ,default=None,
help='training will stop if `max_steps` or `epochs` have reached (earliest), default to None')
training_rnn = parser.add_argument_group(title='RNN Training Settings')
# schedule sampling: https://arxiv.org/pdf/1506.03099.pdf
training_rnn.add_argument('--schedule_sampling_max_prob', default=0.25, type=float, help='maximum schedule sampling prob')
training_rnn.add_argument('--schedule_sampling_saturation_epoch', default=25, type=int, help='which epoch to reach the peak value')
training_na = parser.add_argument_group(title='Non-Autoregressive Model Training Settings')
training_na.add_argument('--with_teacher_during_training', default=False, action='store_true')
training_na.add_argument('--teacher_path', type=str, default='', help='path for the AR-B model')
training_na.add_argument('--teacher_scope', type=str, default='', help='scope for the AR-B model')
training_na.add_argument('--beta', nargs='+', type=float, default=[0, 1],
help='len=2, [lowest masking ratio, highest masking ratio]')
training_na.add_argument('--visual_word_generation', default=False, action='store_true')
training_na.add_argument('--demand', nargs='+', type=str, default=['VERB', 'NOUN'],
help='pos_tag we want to focus on when training with visual word generation')
training_na.add_argument('-nvw', '--nv_weights', nargs='+', type=float, default=[0.8, 1.0],
help='len=2, weights of visual word generation and caption generation (or mlm)')
training_na.add_argument('--load_teacher_weights', default=False, action='store_true',
help='specified for NA-based models, initialize randomly or inherit from the teacher (AR-B)')
optim_scheduler = parser.add_argument_group(title='Optimizer & LR Scheduler Settings')
optim_scheduler.add_argument('--learning_rate', default=5e-4, type=float, help='the initial larning rate')
optim_scheduler.add_argument('--learning_rate_warm_up_steps', default=0, type=int, help='the number of steps to reach the peak')
optim_scheduler.add_argument('--weight_decay', type=float, default=0.001, help='strength of weight regularization')
optim_scheduler.add_argument('--filter_weight_decay', default=False, action='store_true',
help='do not apply weight_decay on specific parametes')
optim_scheduler.add_argument('--filter_biases', default=False, action='store_true',
help='if True, not applying weight decay on biases')
optim_scheduler.add_argument('--gradient_clip_val', default=0.0, type=float, help='gradient clipping value')
optim_scheduler.add_argument('--lr_scheduler_type', default='linear', type=str,
help='`linear` (default): StepLR | otherwise: ReduceLROnPlateau', choices=['linear', 'plateau', 'cosine'])
# if `lr_scheduler_type` == 'linear'
optim_scheduler.add_argument('--lr_decay', default=0.9, type=float, help='the decay rate of learning rate per epoch')
optim_scheduler.add_argument('--lr_step_size', default=1, type=int, help='period of learning rate decay')
# otherwise
optim_scheduler.add_argument('--lr_monitor_mode', default='max', type=str,
help='max (default): higher the metric, better the performance | min: just the opposite',
choices=['min', 'max'])
optim_scheduler.add_argument('--lr_monitor_metric', default='CIDEr', type=str, help='specify the metric for lr adjustment')
optim_scheduler.add_argument('--lr_monitor_patience', default=1, type=int, help='number of epochs with no improvement after which lr will be reduced')
optim_scheduler.add_argument('--min_lr', default=1e-6, type=float, help='the minimum learning rate')
evaluation = parser.add_argument_group(title='Common Evaluation Settings')
evaluation.add_argument('--check_val_every_n_epoch', type=int, default=1,
help='check on the validation set every n train epochs, default to 1')
evaluation.add_argument('--metric_sum', nargs='+', type=int, default=[1, 1, 1, 1],
help='which metrics to calculate `Sum`, default to [1, 1, 1, 1], '
'i.e., `Sum` = `Bleu_4` + `METEOR` + `ROUGE_L` + `CIDEr`')
evaluation.add_argument('--save_csv', default=False, action='store_true',
help='save test results to csv file')
evaluation.add_argument('--VATEX_I3D_preds_json', type=str, default='', help='use to complete predictions for those missing videos in VATEX')
evaluation_ar = parser.add_argument_group(title='Autoregressive Model Evaluation Settings')
evaluation_ar.add_argument('-bs', '--beam_size', type=int, default=5,
help='specified for AR decoding, the number of candidates')
evaluation_ar.add_argument('-ba', '--beam_alpha', type=float, default=1.0,
help='the preference of the model towards the average sentence length, '
'the larger `beam_alpha` is, the longer is the average sentence length')
evaluation_na = parser.add_argument_group(title='Non-Autoregressive Model Evaluation Settings')
evaluation_na.add_argument('--paradigm', type=str, default='mp',
help='mp: MaskPredict | l2r: Left2Right | ef: EasyFirst')
evaluation_na.add_argument('-lbs', '--length_beam_size', type=int, default=6,
help='specified for NA decoding, the number of length candidates')
evaluation_na.add_argument('--iterations', type=int, default=5,
help='the number of iterations for the MP algorithm')
evaluation_na.add_argument('--q', type=int, default=1,
help='the number of tokens to update for L2R & EF algorithms')
evaluation_na.add_argument('--q_iterations', type=int, default=1,
help='the number of iterations for L2R & EF algorithms')
evaluation_na.add_argument('--use_ct', default=False, action='store_true',
help='use coarse-grained templates or not, only for methods with visual word generation')
checkpoint = parser.add_argument_group(title='Checkpoint Settings')
checkpoint.add_argument('--monitor_metric', type=str, default='Sum',
help='which metric to monitor for checkpoint saving: Bleu_4 | METEOR | ROUGE_L | CIDEr | Sum (default)',
choices=['Bleu_4', 'METEOR', 'ROUGE_L', 'CIDEr', 'Sum'])
checkpoint.add_argument('--monitor_mode', type=str, default='max',
help='max: the higher the `monitor_metric` the better the performance | min: just the opposite',
choices=['min', 'max'])
checkpoint.add_argument('--save_topk_models', type=int, default=1,
help='checkpoints with top-k performance will be saved, default to 1')
dataloader = parser.add_argument_group(title='Dataloader Settings')
dataloader.add_argument('--base_data_path', type=str, default='', help='if not specified, Constants.base_data_path will be used by default')
dataloader.add_argument('--max_len', type=int, default=30, help='max length of captions')
dataloader.add_argument('--n_frames', type=int, default=28, help='the number of frames to represent a whole video')
dataloader.add_argument('--n_caps_per_video', type=int, default=0,
help='the number of captions per video to constitute the training set, '
'default to 0 (i.e., loading all captions for a video)')
dataloader.add_argument('--random_type', type=str, default='equally_sampling',
help='sampling strategy during training: segment_random | all_random | equally_sampling (default)',
choices=['segment_random', 'all_random', 'equally_sampling'])
dataloader.add_argument('--load_feats_type', type=int, default=1,
help='load feats from the same frame_ids (0) '
'or different frame_ids (1, default), '
'or directly load all feats without sampling (2)',
choices=[0, 1, 2])
dataloader.add_argument('--num_workers', type=int, default=1, help='num_workers for dataloader, speed up training')
# modality information
dataloader.add_argument('--dim_a', type=int, default=1, help='feature dimension of the audio modality')
dataloader.add_argument('--dim_m', type=int, default=2048, help='feature dimension of the motion modality')
dataloader.add_argument('--dim_i', type=int, default=2048, help='feature dimension of the image modality')
dataloader.add_argument('--dim_o', type=int, default=1, help='feature dimension of the object modality')
dataloader.add_argument('--dim_t', type=int, default=1)
dataloader.add_argument('--feats_a_name', nargs='+', type=str, default=[])
dataloader.add_argument('--feats_m_name', nargs='+', type=str, default=['motion_resnext101_kinetics_duration16_overlap8.hdf5'])
dataloader.add_argument('--feats_i_name', nargs='+', type=str, default=['image_resnet101_imagenet_fps_max60.hdf5'])
dataloader.add_argument('--feats_o_name', nargs='+', type=str, default=[])
dataloader.add_argument('--feats_t_name', nargs='+', type=str, default=[])
dataloader.add_argument('--itoc_path', type=str, default='')
# corpus information
dataloader.add_argument('--info_corpus_name', type=str, default='info_corpus.pkl')
dataloader.add_argument('--reference_name', type=str, default='refs.pkl')
multitask = parser.add_argument_group(title='Multi-Task Settings')
multitask.add_argument('--crits', nargs='+', type=str, default=['lang'],
help='which training objectives to use')
multitask.add_argument('--language_generation_scale', type=float, default=1.0, help='weight for the language generation task (`lang`)')
multitask.add_argument('--label_smoothing', default=0., type=float,
help='label smoothing alpha, default: 0.0, no smoothing at all')
args = parser.parse_args()
return args
def load_yaml_to_update_args(args):
load_yaml(args, args.method, yaml_path='./config/methods.yaml')
if args.decoding_type == 'NARFormer' and args.with_teacher_during_training:
if not args.teacher_path:
args.teacher_path = os.path.join(
Constants.base_checkpoint_path,
args.dataset,
'ARB',
args.teacher_scope if args.teacher_scope else args.scope,
'best.ckpt'
)
assert os.path.exists(args.teacher_path), args.teacher_path
if args.load_teacher_weights:
args.load_model_weights_from = args.teacher_path
args.load_strictly = False
load_yaml(args, args.setup, yaml_path='./config/setups.yaml')
load_yaml(args, args.feats, yaml_path='./config/feats.yaml')
load_yaml(args, args.arch, yaml_path='./config/archs.yaml')
load_yaml(args, args.task, yaml_path='./config/tasks.yaml', modify_scope=True, name_to_path=True)
def get_dir(args, key, mid_path='', value=None):
base_path = args.base_data_path if args.base_data_path else Constants.base_data_path
if value is None:
value = getattr(args, key, '')
if not value:
return ''
if isinstance(value, list):
return [get_dir(args, key, mid_path, value=v) for v in value]
else:
return os.path.join(base_path, args.dataset, mid_path, value)
def where_to_save_model(args):
return os.path.join(
Constants.base_checkpoint_path,
args.dataset,
args.method,
args.task,
args.scope
)
def get_opt():
args = parse_opt()
load_yaml_to_update_args(args)
check_predictor_args(args)
if not args.task:
assert args.scope, "Please add the argument \'--scope $folder_name_to_save_models\' or \'--task $task_name\'"
if args.dataset in ['MSVD', 'VATEX']:
assert not args.with_category, \
f"Category information is not available in the {args.dataset} dataset"
# log files and the best model will be saved at 'checkpoint_path'
args.checkpoint_path = where_to_save_model(args)
if not os.path.exists(args.checkpoint_path):
os.makedirs(args.checkpoint_path)
# get full paths to load features / corpora
for key in ['feats_a_name', 'feats_m_name', 'feats_i_name', 'feats_o_name', 'feats_t_name'] \
+ ['reference_name', 'info_corpus_name']:
setattr(args, key[:-5], get_dir(args, key, 'feats' if 'feats' in key else ''))
delattr(args, key)
print(key[:-5], getattr(args, key[:-5]))
# the assignment of 'vocab_size' should be done before defining the model
args.vocab_size = len(pickle.load(open(args.info_corpus, 'rb'))['info']['itow'].keys())
opt = vars(args)
print(opt)
return opt