-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlate_fusion.py
80 lines (72 loc) · 2.97 KB
/
late_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import torch
import pickle
from sksurv.metrics import concordance_index_censored
import numpy as np
import argparse
parser = argparse.ArgumentParser(
description='Late Fusion Configurations Survival Analysis on TCGA Data.')
parser.add_argument('--wsi_dir', type=str, default='', help='input the histological results dir')
parser.add_argument('--rna_dir', type=str, default='', help='input the genomic results dir')
parser.add_argument('--muti_dir', type=str, default='', help='output the mutimodal results')
def read_pkl(path):
with open(path,'rb') as f:
data = pickle.load(f)
ids,risks,survivals,censorships = [],[],[],[]
for key in data:
ids.append(key)
censorships.append(data[key]['censorship'])
if isinstance(data[key]['risk'],torch.Tensor) or isinstance(data[key]['risk'],np.ndarray):
risks.append(np.squeeze(data[key]['risk']).item())
else:
risks.append(data[key]['risk'])
survivals.append(data[key]['survival'])
survivals = np.array(survivals)
censorships = np.array(censorships)
risks = np.array(risks)
return ids,risks,survivals,censorships
def write_pkl(ids, risks,survivals,censorships,filepath):
data = {}
for id,r,s,c in zip(ids,risks,survivals,censorships):
data.update({id: {
'slide_id': np.array(id),
'risk': r,
'disc_label': -1,
'survival': s,
'censorship': c
}})
writer = open(filepath,'wb')
pickle.dump(data, writer)
writer.close()
def summary_mean_results(rs):
mean = np.mean(rs)
maxi = max(rs)
mini = min(rs)
print(f"{round(mean,3)}({round(mini,3)}-{round(maxi,3)}),std:{round(np.std(rs),3)}")
if __name__=='__main__':
args = parser.parse_args()
if not os.path.exists(args.muti_dir):
os.mkdir(args.muti_dir)
c_indexs_wsi = []
c_indexs_rna = []
c_indexs_merge = []
for epoch in range(5):
wsi_path = os.path.join(args.wsi_dir,f'split_latest_val_{epoch}_results.pkl')
rna_path = os.path.join(args.rna_dir,f'split_latest_val_{epoch}_results.pkl')
ids1,r1,s1,c1 = read_pkl(wsi_path)
ids2,r2,s2,c2 = read_pkl(rna_path)
merge_r = np.maximum(r1,r2)
assert ids1==ids2 and (s1==s2).all()
write_pkl(ids1,merge_r,s1,c1,os.path.join(args.muti_dir,f'split_latest_val_{epoch}_results.pkl'))
c_index1 = concordance_index_censored((1-c1).astype(bool),s1,r1,tied_tol=1e-8)[0]
c_index2 = concordance_index_censored((1-c1).astype(bool),s1,r2,tied_tol=1e-8)[0]
c_index_merge = concordance_index_censored((1-c1).astype(bool),s1,merge_r,tied_tol=1e-8)[0]
c_indexs_wsi.append(c_index1)
c_indexs_rna.append(c_index2)
c_indexs_merge.append(c_index_merge)
print('wsi:',end='')
summary_mean_results(c_indexs_wsi)
print('rna:',end='')
summary_mean_results(c_indexs_rna)
print('muti:',end='')
summary_mean_results(c_indexs_merge)