-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathattack_evaluation.py
executable file
·245 lines (222 loc) · 10.5 KB
/
attack_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""
Evaluate robustness against specific attack.
Loosely based on code from https://github.com/yaodongyu/TRADES
"""
import os
import json
import numpy as np
import re
import argparse
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
from datasets import SemiSupervisedDataset, DATASETS
from torchvision import transforms
from attack_pgd import pgd
from attack_cw import cw
import torch.backends.cudnn as cudnn
from utils import get_model
def eval_adv_test(model, device, test_loader, attack, attack_params,
results_dir, num_eval_batches):
"""
evaluate model by white-box attack
"""
model.eval()
if attack == 'pgd':
restarts_matrices = []
for restart in range(attack_params['num_restarts']):
is_correct_adv_rows = []
count = 0
batch_num = 0
natural_num_correct = 0
for data, target in test_loader:
batch_num = batch_num + 1
if num_eval_batches and batch_num > num_eval_batches:
break
data, target = data.to(device), target.to(device)
count += len(target)
X, y = Variable(data, requires_grad=True), Variable(target)
# is_correct_adv has batch_size*num_iterations dimensions
is_correct_natural, is_correct_adv = pgd(
model, X, y,
epsilon=attack_params['epsilon'],
num_steps=attack_params['num_steps'],
step_size=attack_params['step_size'],
random_start=attack_params['random_start'])
natural_num_correct += is_correct_natural.sum()
is_correct_adv_rows.append(is_correct_adv)
is_correct_adv_matrix = np.concatenate(is_correct_adv_rows, axis=0)
restarts_matrices.append(is_correct_adv_matrix)
is_correct_adv_over_restarts = np.stack(restarts_matrices, axis=-1)
num_correct_adv = is_correct_adv_over_restarts.prod(
axis=-1).prod(axis=-1).sum()
logging.info("Accuracy after %d restarts: %.4g%%" %
(restart + 1, 100 * num_correct_adv / count))
stats = {'attack': 'pgd',
'count': count,
'attack_params': attack_params,
'natural_accuracy': natural_num_correct / count,
'is_correct_adv_array': is_correct_adv_over_restarts,
'robust_accuracy': num_correct_adv / count,
'restart_num': restart
}
np.save(os.path.join(results_dir, 'pgd_results.npy'), stats)
elif attack == 'cw':
all_linf_distances = []
count = 0
for data, target in test_loader:
logging.info('Batch: %g', count)
count = count + 1
if num_eval_batches and count > num_eval_batches:
break
data, target = data.to(device), target.to(device)
X, y = Variable(data, requires_grad=True), Variable(target)
batch_linf_distances = cw(model, X, y,
binary_search_steps=attack_params[
'binary_search_steps'],
max_iterations=attack_params[
'max_iterations'],
learning_rate=attack_params[
'learning_rate'],
initial_const=attack_params[
'initial_const'],
tau_decrease_factor=attack_params[
'tau_decrease_factor'])
all_linf_distances.append(batch_linf_distances)
stats = {'attack': 'cw',
'attack_params': attack_params,
'linf_distances': np.array(all_linf_distances),
}
np.save(os.path.join(results_dir, 'cw_results.npy'), stats)
else:
raise ValueError('Unknown attack %s' % attack)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='PyTorch CIFAR Attack Evaluation')
parser.add_argument('--dataset', type=str, default='cifar10',
choices=DATASETS,
help='The dataset')
parser.add_argument('--model_path',
help='Model for attack evaluation')
parser.add_argument('--model', '-m', default='wrn-28-10', type=str,
help='Name of the model')
parser.add_argument('--output_suffix', default='', type=str,
help='String to add to log filename')
parser.add_argument('--batch_size', type=int, default=200, metavar='N',
help='Input batch size for testing (default: 200)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='Disables CUDA training')
parser.add_argument('--epsilon', default=0.031, type=float,
help='Attack perturbation magnitude')
parser.add_argument('--attack', default='pgd', type=str,
help='Attack type (CW requires FoolBox)',
choices=('pgd', 'cw'))
parser.add_argument('--num_steps', default=40, type=int,
help='Number of PGD steps')
parser.add_argument('--step_size', default=0.01, type=float,
help='PGD step size')
parser.add_argument('--num_restarts', default=5, type=int,
help='Number of restarts for PGD attack')
parser.add_argument('--no_random_start', dest='random_start',
action='store_false',
help='Disable random PGD initialization')
parser.add_argument('--binary_search_steps', default=5, type=int,
help='Number of binary search steps for CW attack')
parser.add_argument('--max_iterations', default=1000, type=int,
help='Max number of Adam iterations in each CW'
' optimization')
parser.add_argument('--learning_rate', default=5E-3, type=float,
help='Learning rate for CW attack')
parser.add_argument('--initial_const', default=1E-2, type=float,
help='Initial constant for CW attack')
parser.add_argument('--tau_decrease_factor', default=0.9, type=float,
help='Tau decrease factor for CW attack')
parser.add_argument('--random_seed', default=0, type=int,
help='Random seed for permutation of test instances')
parser.add_argument('--num_eval_batches', default=None, type=int,
help='Number of batches to run evalaution on')
parser.add_argument('--shuffle_testset', action='store_true', default=False,
help='Shuffles the test set')
args = parser.parse_args()
torch.manual_seed(args.random_seed)
output_dir, checkpoint_name = os.path.split(args.model_path)
epoch = int(re.search('epoch(\d+)', checkpoint_name).group(1))
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(message)s",
handlers=[
logging.FileHandler(os.path.join(output_dir,
'attack_epoch%d%s.log' %
(epoch, args.output_suffix))),
logging.StreamHandler()
])
logger = logging.getLogger()
results_dir = os.path.join(output_dir, args.output_suffix)
if not os.path.isdir(results_dir):
os.mkdir(results_dir)
logging.info('Attack evaluation')
logging.info('Args: %s' % args)
# settings
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
dl_kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# set up data loader
transform_test = transforms.Compose([transforms.ToTensor(), ])
testset = SemiSupervisedDataset(base_dataset=args.dataset,
train=False, root='data',
download=True,
transform=transform_test)
if args.shuffle_testset:
np.random.seed(123)
logging.info("Permuting testset")
permutation = np.random.permutation(len(testset))
testset.data = testset.data[permutation, :]
testset.targets = [testset.targets[i] for i in permutation]
test_loader = torch.utils.data.DataLoader(testset,
batch_size=args.batch_size,
shuffle=False, **dl_kwargs)
checkpoint = torch.load(args.model_path)
state_dict = checkpoint.get('state_dict', checkpoint)
num_classes = checkpoint.get('num_classes', 10)
normalize_input = checkpoint.get('normalize_input', False)
model = get_model(args.model, num_classes=num_classes,
normalize_input=normalize_input)
if use_cuda:
model = torch.nn.DataParallel(model).cuda()
cudnn.benchmark = True
if not all([k.startswith('module') for k in state_dict]):
state_dict = {'module.' + k: v for k, v in state_dict.items()}
else:
def strip_data_parallel(s):
if s.startswith('module'):
return s[len('module.'):]
else:
return s
state_dict = {strip_data_parallel(k): v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
attack_params = {
'epsilon': args.epsilon,
'seed': args.random_seed
}
if args.attack == 'pgd':
attack_params.update({
'num_restarts': args.num_restarts,
'step_size': args.step_size,
'num_steps': args.num_steps,
'random_start': args.random_start,
})
elif args.attack == 'cw':
attack_params.update({
'binary_search_steps': args.binary_search_steps,
'max_iterations': args.max_iterations,
'learning_rate': args.learning_rate,
'initial_const': args.initial_const,
'tau_decrease_factor': args.tau_decrease_factor
})
logging.info('Running %s' % attack_params)
eval_adv_test(model, device, test_loader, attack=args.attack,
attack_params=attack_params, results_dir=results_dir,
num_eval_batches=args.num_eval_batches)