-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathadversarial_defense.py
56 lines (48 loc) · 2.83 KB
/
adversarial_defense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import time
from data import create_dataset
from options.train_options import TrainOptions
from util.visualizer import Visualizer
from models import create_model
if __name__=="__main__":
opt = TrainOptions().parse()
opt.save_latest_freq = 500 * opt.batch_size
train_dataset = create_dataset(opt, flag='train') # create a dataset given opt.dataset_mode and other options
train_dataset_size = len(train_dataset)
print('training dataset size:', train_dataset_size)
pix2pix = create_model(opt)
pix2pix.setup(opt)
total_iters = 0
visualizer = Visualizer(opt)
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
data_start_time = time.time()
for i, data in enumerate(train_dataset):
iter_start_time = time.time() # timer for computation per iteration
data_end_time = iter_start_time
datatime = data_end_time - data_start_time
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
pix2pix.set_input(data)
cal_start_time = time.time()
pix2pix.optimize_parameters(epoch)
cal_end_time = time.time()
caltime = cal_end_time - cal_start_time
losses = pix2pix.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, total_iters, losses, datatime, caltime)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
pix2pix.save_networks(save_suffix)
iter_data_time = time.time()
data_start_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
pix2pix.save_networks('latest')
pix2pix.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
pix2pix.update_learning_rate(opt) # update learning rates at the end of every epoch