-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtimer.py
66 lines (50 loc) · 1.83 KB
/
timer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from time import strftime, gmtime, time
from collections import defaultdict
import tensorflow as tf
from utility.aggregator import Aggregator
def timeit(func, *args, name=None, to_print=False, **kwargs):
start_time = gmtime()
start = time()
result = func(*args, **kwargs)
end = time()
end_time = gmtime()
if to_print:
print(f'{name if name else func.__name__}: '
f'Start "{strftime("%d %b %H:%M:%S", start_time)}"',
f'End "{strftime("%d %b %H:%M:%S", end_time)}"'
f'Duration "{end - start:.2f}s"')
return end - start, result
class Timer:
def __init__(self, summary_name):
self.summary_name = summary_name
def __enter__(self):
self.start = time()
return self
def __exit__(self, exc_type, exc_value, traceback):
duration = time() - self.start
print(f'{self.summary_name} duration "{duration:.2f}s"')
class TFTimer:
aggregators = defaultdict(Aggregator)
def __init__(self, summary_name, period):
self.summary_name = summary_name
self.period = period
def __enter__(self):
self.start = time()
return self
def __exit__(self, exc_type, exc_value, traceback):
duration = time() - self.start
aggregator = self.aggregators[self.summary_name]
aggregator.add(duration)
if aggregator.count >= self.period:
tf.summary.scalar(self.summary_name, aggregator.average())
aggregator.reset()
class LoggerTimer:
def __init__(self, logger, summary_name):
self.logger = logger
self.summary_name = summary_name
def __enter__(self):
self.start = time()
return self
def __exit__(self, exc_type, exc_value, traceback):
duration = time() - self.start
self.logger.store(**{self.summary_name: duration})