-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathddpg_agent.py
149 lines (125 loc) · 5.99 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
""""
Project for Udacity Danaodgree in Deep Reinforcement Learning (DRL)
Code Expanded and Adapted from Code provided by Udacity DRL Team, 2018.
"""
import numpy as np
import random
import copy
from collections import namedtuple, deque
from model import Actor, Critic
from replay_buffer import ReplayBuffer
from OUNoise import OUNoise
import torch
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = int(5e5) # replay buffer size
BATCH_SIZE = 128 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 5e-3 # for soft update of target parameters
LR_ACTOR = 1e-3 # learning rate of the actor
LR_CRITIC = 1e-3 # learning rate of the critic
WEIGHT_DECAY = 0 # L2 weight decay
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, num_agents, random_seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.num_agents = num_agents
self.seed = random.seed(random_seed)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size, action_size, random_seed).to(device)
self.critic_target = Critic(state_size, action_size, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)
# Noise process for each agent
self.noise = OUNoise((num_agents, action_size), random_seed)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
def step(self, states, actions, rewards, next_states, dones):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
if self.num_agents > 1:
for agent in range(self.num_agents):
self.memory.add(states[agent,:], actions[agent,:], rewards[agent], next_states[agent,:], dones[agent])
else:
self.memory.add(states, actions, rewards, next_states, dones)
# Learn, if enough samples are available in memory
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences)
def act(self, state, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
acts = np.zeros((self.num_agents, self.action_size))
self.actor_local.eval()
with torch.no_grad():
if self.num_agents > 1:
for agent in range(self.num_agents):
acts[agent,:] = self.actor_local(state[agent,:]).cpu().data.numpy()
else:
acts[0,:] = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if add_noise:
acts += self.noise.sample()
return np.clip(acts, -1, 1)
def reset(self):
self.noise.reset()
def learn(self, experiences):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (GAMMA * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
#torch.nn.utils.clip_grad_norm(self.critic_local.parameters(), 1)
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, TAU)
self.soft_update(self.actor_local, self.actor_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)