-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsp.py
513 lines (419 loc) · 16 KB
/
sp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import time
import xml.etree.ElementTree as ET
import math
import re
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import random
from sko.PSO import PSO
from sko.GA import GA
from collections import Counter
# def init_topology():
node_number = 12
nf_number = 7
node_list = [i for i in range(1, node_number + 1)]
nf_list = [i for i in range(1, nf_number + 1)]
adj = [(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 6), (5, 6), (5, 7), (6, 8),
(7, 8), (7, 9), (9, 10), (10, 11), (11, 8), (12, 8)]
G = nx.Graph()
G.add_edges_from(adj)
class TopologyGenerator:
def __init__(self):
pass
def get_topology_info(self, topology_file):
input_file_name = topology_file
bandwidth_argument = ''
# READ FILE AND DO ALL THE ACTUAL PARSING IN THE NEXT PARTS
xml_tree = ET.parse(input_file_name)
namespace = "{http://graphml.graphdrawing.org/xmlns}"
ns = namespace # just doing shortcutting, namespace is needed often.
# GET ALL ELEMENTS THAT ARE PARENTS OF ELEMENTS NEEDED LATER ON
root_element = xml_tree.getroot()
graph_element = root_element.find(ns + 'graph')
# GET ALL ELEMENT SETS NEEDED LATER ON
index_values_set = root_element.findall(ns + 'key')
node_set = graph_element.findall(ns + 'node')
edge_set = graph_element.findall(ns + 'edge')
# SET SOME VARIABLES TO SAVE FOUND DATA FIRST
# memomorize the values' ids to search for in current topology
node_label_name_in_graphml = ''
node_latitude_name_in_graphml = ''
node_longitude_name_in_graphml = ''
# for saving the current values
node_index_value = ''
node_name_value = ''
node_longitude_value = ''
node_latitude_value = ''
# id:value dictionaries
id_node_name_dict = {} # to hold all 'id: node_name_value' pairs
id_longitude_dict = {} # to hold all 'id: node_longitude_value' pairs
id_latitude_dict = {} # to hold all 'id: node_latitude_value' pairs
# FIND OUT WHAT KEYS ARE TO BE USED, SINCE THIS DIFFERS IN DIFFERENT GRAPHML TOPOLOGIES
for i in index_values_set:
if i.attrib['attr.name'] == 'label' and i.attrib['for'] == 'node':
node_label_name_in_graphml = i.attrib['id']
if i.attrib['attr.name'] == 'Longitude':
node_longitude_name_in_graphml = i.attrib['id']
if i.attrib['attr.name'] == 'Latitude':
node_latitude_name_in_graphml = i.attrib['id']
nodes = set()
# NOW PARSE ELEMENT SETS TO GET THE DATA FOR THE TOPO
# GET NODE_NAME DATA
# GET LONGITUDE DATK
# GET LATITUDE DATA
for n in node_set:
node_index_value = n.attrib['id']
nodes.add(str(int(node_index_value) + 1))
# get all data elements residing under all node elements
data_set = n.findall(ns + 'data')
# finally get all needed values
for d in data_set:
# node name
if d.attrib['key'] == node_label_name_in_graphml:
# strip all whitespace from names so they can be used as id's
node_name_value = re.sub(r'\s+', '', d.text)
# longitude data
if d.attrib['key'] == node_longitude_name_in_graphml:
node_longitude_value = d.text
# latitude data
if d.attrib['key'] == node_latitude_name_in_graphml:
node_latitude_value = d.text
# save id:data couple
id_node_name_dict[node_index_value] = node_name_value
id_longitude_dict[node_index_value] = node_longitude_value
id_latitude_dict[node_index_value] = node_latitude_value
edges = set()
for e in edge_set:
# GET IDS FOR EASIER HANDLING
src_id = e.attrib['source']
dst_id = e.attrib['target']
first_product = math.sin(float(id_latitude_dict[dst_id])) * math.sin(float(id_latitude_dict[src_id]))
second_product_first_part = math.cos(float(id_latitude_dict[dst_id])) * math.cos(
float(id_latitude_dict[src_id]))
second_product_second_part = math.cos(
(float(id_longitude_dict[dst_id])) - (float(id_longitude_dict[src_id])))
distance = math.radians(
math.acos(first_product + (second_product_first_part * second_product_second_part))) * 6378.137
# t (in ms) = ( distance in km * 1000 (for meters) ) / ( speed of light / 1000 (for ms))
# t = ( distance * 1000 ) / ( 1.97 * 10**8 / 1000 )
latency = (distance * 1000) / (197000)
# BANDWIDTH LIMITING
# set bw to 10mbit if nothing was specified otherwise on startup
if bandwidth_argument == '':
bandwidth_argument = '10'
edges.add((str(int(src_id) + 1), str(int(dst_id) + 1), latency))
return edges, nodes, id_node_name_dict
def init_topology(name):
tg = TopologyGenerator()
edges_old, nodes_old, id_node_name_dict = tg.get_topology_info(topology_file=name)
edges = []
nodes = []
for item in edges_old:
edges.append((int(item[0]), int(item[1])))
for item in nodes_old:
nodes.append(int(item))
node_list = [i for i in range(1, len(nodes) + 1)]
G = nx.Graph()
G.add_edges_from(edges)
return G, node_list
class Request:
def __init__(self, id, src, dst, service_chain):
self.id = id
self.src = src
self.dst = dst
self.service_chain = service_chain
self.short_path = None
def show(self):
print("src:{}, dst:{}, service_chain:{}".format(self.src, self.dst, str(self.service_chain)))
def __eq__(self, other):
flag = True
if self.src == other.src and self.dst == other.dst:
if len(self.service_chain) == len(other.service_chain):
for i in range(len(self.service_chain)):
if self.service_chain[i] != other.service_chain[i]:
flag = False
else:
flag = False
else:
flag = False
return flag
def __hash__(self):
res = ""
res += str(self.src)
for nf in self.service_chain:
res += "0{}".format(nf)
res += "0{}".format(self.dst)
return int(res)
def get_service_path(self, nf_nodes, G):
req = self
weights = []
for i in range(len(req.service_chain) + 1):
if i == 0:
last_nodes = [req.src]
else:
last_nodes = nf_nodes[req.service_chain[i - 1] - 1]
if i == len(req.service_chain):
cur_nodes = [req.dst]
else:
nf = req.service_chain[i]
cur_nodes = nf_nodes[nf - 1]
for cur in cur_nodes:
for last in last_nodes:
paths = nx.shortest_path(G, source=cur, target=last, weight=None, method="dijkstra")
# weights.append((cur, last, len(paths)-1))
weights.append(("{}_{}".format(cur, i + 1), ("{}_{}".format(last, i)), len(paths) - 1))
req_G = nx.Graph()
req_G.add_weighted_edges_from(weights)
# self.show()
try:
return nx.shortest_path_length(req_G, source="{}_{}".format(req.src, 0), weight="weight",
target="{}_{}".format(req.dst, len(req.service_chain) + 1),
method="dijkstra")
except:
print("hello")
# return 1000000
def generate_request(req_number=10):
requests = []
for i in range(req_number):
pairs = random.sample(node_list, 2)
src = pairs[0]
dst = pairs[1]
# service_length = random.sample(nf_list, 1)[0]
service_length = random.sample(nf_list[5:7], 1)[0]
service_chain = random.sample(nf_list, service_length)
requests.append(Request(id=i, src=src, dst=dst, service_chain=service_chain))
for re in requests:
re.show()
return requests
# print(node_list)
# print(nf_list)
# print(random.sample(nf_list, 3))
def short_path():
res = 0
for req in requests:
res += nx.shortest_path_length(G, source=req.src, target=req.dst, method="dijkstra")
return res
def max_degree(node_number=5):
begin = time.time()
degrees = G.degree
degrees = sorted(degrees, key=lambda x: x[1], reverse=True)
selected_nodes = []
for i in range(node_number):
selected_nodes.append(degrees[i][0])
# print(selected_nodes)
# return None
# [(8, 4), (2, 3), (3, 3), (5, 3), (6, 3), (7, 3), (1, 2), (4, 2), (9, 2), (10, 2), (11, 2), (12, 1)]
service_chains = []
for req in requests:
service_chains.extend(req.service_chain)
nf_pop = Counter(service_chains).most_common(nf_number)
# print(nf_pop[0])
# print(nf_pop)
#
nf_nodes = []
for i in range(nf_number):
nf_nodes.append(selected_nodes)
end = time.time()
res = 0
for req in requests:
res += req.get_service_path(nf_nodes, G)
return res, end - begin
def obj_func(x):
res = cons(x)
for r in res:
if r[0] != 0:
return 100000000
x_new = np.array(x[0:nf_number * node_number]).reshape((nf_number, node_number))
nf_nodes = []
for tmp in x_new:
nf_nodes.append(np.where(tmp == 1)[0] + 1)
res = 0
print(x_new)
for req in requests:
res += req.get_service_path(nf_nodes=nf_nodes, G=G)
return res
def cons(x):
place_number = nf_number * node_number
place_matrix = np.array(x[0:place_number]).reshape(nf_number, node_number)
constraint_eq = []
for i in range(len(place_matrix)):
constraint_eq.append([sum(place_matrix[i]) - x[place_number + i]])
place_matrix = place_matrix.T
for i in range(len(place_matrix)):
constraint_eq.append([sum(place_matrix[i]) - x[place_number + nf_number + i]])
return constraint_eq
def pso_test():
# 迭代次数
# max_iter = 50
# max_iter = 2
max_iter = 200
place_number = nf_number * node_number
val_number = place_number + nf_number + node_number
max_nf = 6
'''
每个网络功能最多部署node_number个
每个交换机上最多部署max_nf个网络功能
'''
cons1 = cons
pso = GA(func=obj_func, size_pop=500,
n_dim=val_number,
max_iter=max_iter,
lb=[0] * place_number + [1] * nf_number + [0] * node_number,
ub=[1] * place_number + [node_number] * nf_number + [max_nf] * node_number, precision=[1] * val_number,
constraint_eq=[cons1])
pso.to("cuda:0")
pso.record_mode = True
gbest_x, gbest_y = pso.run()
print('best_x is ', np.array(gbest_x[0:place_number]).reshape(nf_number, node_number),
gbest_x[place_number:place_number + nf_number],
gbest_x[place_number + nf_number:-1],
'best_y is', gbest_y)
print("max degree:", max_degree(node_number=5))
print("optimal:", short_path())
# greedy 策略, 计算出每个节点覆盖最短路的数目,选择最多的节点
def greedy(node_number=5):
dict_node = {}
tuple_node = []
nf_nodes = []
for i in range(nf_number):
nf_nodes.append([])
# print(nf_nodes)
for req in requests:
paths = nx.shortest_path(G, source=req.src, target=req.dst)
req.short_path = paths
for p in paths:
if p in dict_node.keys():
dict_node[p].append(req)
else:
dict_node[p] = [req]
for key in dict_node.keys():
tuple_node.append((key, len(dict_node[key])))
tuple_node = sorted(tuple_node, key=lambda x: x[1], reverse=True)
# print(tuple_node)
for i in range(node_number):
node = tuple_node[i][0]
# print(node)
dict_nf = {}
for req in dict_node[node]:
for nf in req.service_chain:
if nf in dict_nf.keys():
dict_nf[nf] += 1
else:
dict_nf[nf] = 1
tuple_nf = []
for key in dict_nf.keys():
tuple_nf.append((key, dict_nf[key]))
tuple_nf = sorted(tuple_nf, key=lambda x: x[1], reverse=True)
# print(tuple_nf)
for j in range(7):
nf = tuple_nf[j][0]
nf_nodes[nf - 1].append(node)
# print(nf_nodes)
res = 0
for req in requests:
res += req.get_service_path(nf_nodes, G)
return res
# greedy 策略, 计算出每个节点覆盖最短路的数目,选择最多的节点
def greedy_new(node_number=5):
dict_node = {}
tuple_nf = []
nf_nodes = []
for i in range(nf_number):
nf_nodes.append([])
# print(nf_nodes)
nf_pop = {}
for req in requests:
paths = nx.shortest_path(G, source=req.src, target=req.dst)
req.short_path = paths
for p in paths:
if p in dict_node.keys():
dict_node[p].append(req)
else:
dict_node[p] = [req]
for nf in req.service_chain:
if nf in nf_pop:
nf_pop[nf].append(req)
else:
nf_pop[nf] = [req]
for key in nf_pop.keys():
tuple_nf.append((key, len(nf_pop[key])))
tuple_nf = sorted(tuple_nf, key=lambda x: x[1], reverse=True)
# print(tuple_nf)
begin = time.time()
for (i, item) in enumerate(tuple_nf):
nf = item[0]
# reqs = nf_pop[nf]
reqs = set(nf_pop[nf])
node_dict = {}
for req in reqs:
path = nx.shortest_path(G, source=req.src, target=req.dst)
for p in path:
if p in node_dict:
node_dict[p].add(req)
else:
node_dict[p] = {req}
selected = []
# while len(selected) < 2:
while len(selected) < node_number:
# while len(reqs) != 0:
tmp = []
for key in node_dict:
# print(node_dict[key].intersection(reqs))
tmp.append((key, len(node_dict[key].intersection(reqs))))
tmp = sorted(tmp, key=lambda x: x[1], reverse=True)
node = tmp[0][0]
selected.append(node)
reqs = reqs.difference(node_dict[node])
# node_pop = Counter(paths).most_common()
# print(selected)
nf_nodes[nf-1] = selected
# print(nf_nodes)
# break
end = time.time()
#
res = 0
for (i, req) in enumerate(requests):
t1 = time.time()
res += req.get_service_path(nf_nodes, G)
t2 = time.time()
# print(i, t2-t1)
return res, end - begin
if __name__ == "__main__":
# # nx.draw(G, with_labels=True)
# # plt.show()
# print(G.adj)
# test()
# main()
# pso_test()
# requests = generate_request(req_number=10000)
# G, node_list = init_topology(name="topo/Chinanet.graphml")
# G, node_list = init_topology(name="topo/Abilene.graphml")
# G, node_list = init_topology(name="topo/TopologyZoo/Geant2012.graphml")
nf_number = 7
nf_list = [i for i in range(1, nf_number + 1)]
node_number = len(node_list)
t1 = time.time()
requests = generate_request(req_number=10000)
# print(max_degree(node_number=1))
# print(greedy_new(node_number=1))
# for i in range(1, 7):
print(node_list)
for i in range(1, len(node_list)+1):
print(i)
t1 = time.time()
print(max_degree(node_number=i))
t2 = time.time()
# print(greedy(node_number=i))
print(greedy_new(node_number=i))
t3 = time.time()
# print("max degree:{}, greedy:{}".format(t2-t1, t3-t2))
print("------------------------")
print(short_path())
# print(greedy_new(node_number=10))
# pso_test()
# t2 = time.time()
# print(t2 - t1)
# max_degree()
# print("max degree:", max_degree(node_number=3))
# print("optimal:", short_path())