-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrainer.py
82 lines (69 loc) · 2.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import time
from tqdm import tqdm
from networks import *
def train_epoch(args, train_set, device):
N = len(train_set)
C, M = train_set.C, train_set.M
torch.manual_seed(time.time())
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=4
)
if args.dataset == "word":
EmbeddingNet = TwoLayerCNN
elif args.dataset == "querylog":
EmbeddingNet = QuerylogCNN
elif args.dataset == "enron":
EmbeddingNet = EnronCNN
elif args.dataset == "trec":
EmbeddingNet = TrecCNN
elif args.dataset == "dblp":
EmbeddingNet = DBLPCNN
elif args.dataset == "uniref":
EmbeddingNet = UnirefCNN
else:
EmbeddingNet = MultiLayerCNN
if args.epochs == 0 and args.dataset != "word":
EmbeddingNet = RandomCNN
net = EmbeddingNet(C, M, embedding=args.embed_dim, channel=args.channel, mtc_input=args.mtc).to(device)
model = TripletNet(net).to(device)
losser = TripletLoss(args)
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
with tqdm(total=args.epochs * len(train_loader), desc="# training") as p_bar:
for epoch in range(args.epochs):
agg = 0.0
agg_r = 0
agg_m = 0
optimizer.zero_grad()
start_time = time.time()
for idx, batch in enumerate(train_loader):
(
anchor, pos, neg,
anchor_len, pos_len, neg_len,
pos_dist, neg_dist, pos_neg_dist,
) = (i.to(device) for i in batch)
optimizer.zero_grad()
output = model((anchor, pos, neg))
r, m, loss = losser(
output,
(anchor_len, pos_len, neg_len),
(pos_dist, neg_dist, pos_neg_dist),
epoch,
)
loss.backward()
optimizer.step()
agg += loss.item()
agg_r += r.item()
agg_m += m.item()
p_bar.update(1)
p_bar.set_description(
"# Epoch: %3d Time: %.3f Loss: %.3f r: %.3f m: %.3f"
% (
epoch,
time.time() - start_time,
agg / (idx + 1),
agg_r / (idx + 1),
agg_m / (idx + 1),
)
)
return model