Skip to content

Latest commit

 

History

History
989 lines (769 loc) · 58.2 KB

README.md

File metadata and controls

989 lines (769 loc) · 58.2 KB

Lite.AI 🚀🚀🌟


Introduction.

Lite.AI 🚀🚀🌟 is a simple, low-coupling, and user-friendly C++ library for awesome🔥🔥🔥 AI models, such as YOLOX, YoloV5, YoloV4, DeepLabV3, ArcFace, CosFace, Colorization, SSD, etc. And, it only relies on OpenCV and commonly used inference engines, namely, onnxruntime, ncnn, and mnn. It currently mainly includes some CV(Computer Vision 💻) modules, such as object detection, face detection, style transfer, face alignment, face recognition, segmentation, colorization, face attributes analysis, image classification, matting, etc. You can use these awesome models through lite::cv::Type::Class syntax, such as lite::cv::detection::YoloV5 or lite::cv::face::detect::UltraFace. I do have plans to add NLP or ASR modules, but not coming soon. Currently, I am focusing🔍 on Computer Vision 💻 . It is important to note that the models here are all from third-party projects. All models used will be cited. Many thanks to these contributors. Have a good travel ~ 🙃🤪🍀

Important Notes !!!

  • 🔥 (20210721) Added YOLOX into Lite.AI ! Use it through lite::cv::detection::YoloX syntax ! See demo .
  • ⚠️ (20210716) Lite.AI was rename from the LiteHub repo ! LiteHub will no longer be maintained.
Expand for More Notes.
Expand for Related Lite.AI Projects.

License.

The code of Lite.AI is released under the MIT License.

Contents.

1. Dependencies.

  • Mac OS.
    install OpenCV and onnxruntime libraries using Homebrew or you can download the built dependencies from this repo. See third_party and build-docs1 for more details.
  brew update
  brew install opencv
  brew install onnxruntime
Expand for More Details of Dependencies.
  • Linux.

    • todo⚠️
  • Windows.

    • todo⚠️
  • Inference Engine Plans:

    • doing:
      ❇️ onnxruntime
    • todo:
      ⚠️ NCNN
      ⚠️ MNN
      ⚠️ OpenMP

2. Model Zoo.

2.1 Namespace and Lite.AI modules.

Namepace Details
lite::cv::detection Object Detection. one-stage and anchor-free detectors, YoloV5, YoloV4, SSD, etc. ✅
lite::cv::classification Image Classification. DensNet, ShuffleNet, ResNet, IBNNet, GhostNet, etc. ✅
lite::cv::faceid Face Recognition. ArcFace, CosFace, CurricularFace, etc. ❇️
lite::cv::face Face Analysis. detect, align, pose, attr, etc. ❇️
lite::cv::face::detect Face Detection. UltraFace, RetinaFace, FaceBoxes, PyramidBox, etc. ❇️
lite::cv::face::align Face Alignment. PFLD(106), FaceLandmark1000(1000 landmarks), PRNet, etc. ❇️
lite::cv::face::pose Head Pose Estimation. FSANet, etc. ❇️
lite::cv::face::attr Face Attributes. Emotion, Age, Gender. EmotionFerPlus, VGG16Age, etc. ❇️
lite::cv::segmentation Object Segmentation. Such as FCN, DeepLabV3, etc. ⚠️
lite::cv::style Style Transfer. Contains neural style transfer now, such as FastStyleTransfer. ⚠️
lite::cv::matting Image Matting. Object and Human matting. ⚠️
lite::cv::colorization Colorization. Make Gray image become RGB. ⚠️
lite::cv::resolution Super Resolution. ⚠️

2.2 Lite.AI's Classes and Pretrained Files.

Correspondence between the classes in Lite.AI and pretrained model files can be found at lite.ai.hub.md. For examples, the pretrained model files for lite::cv::detection::YoloV5 and lite::cv::detection::YoloX are listed as following.

Model Pretrained ONNX Files Rename or Converted From (Repo) Size
lite::cv::detection::YoloV5 yolov5l.onnx yolov5 (🔥🔥💥↑) 188Mb
lite::cv::detection::YoloV5 yolov5m.onnx yolov5 (🔥🔥💥↑) 85Mb
lite::cv::detection::YoloV5 yolov5s.onnx yolov5 (🔥🔥💥↑) 29Mb
lite::cv::detection::YoloV5 yolov5x.onnx yolov5 (🔥🔥💥↑) 351Mb
lite::cv::detection::YoloX yolox_x.onnx YOLOX (🔥🔥!!↑) 378Mb
lite::cv::detection::YoloX yolox_l.onnx YOLOX (🔥🔥!!↑) 207Mb
lite::cv::detection::YoloX yolox_m.onnx YOLOX (🔥🔥!!↑) 97Mb
lite::cv::detection::YoloX yolox_s.onnx YOLOX (🔥🔥!!↑) 34Mb
lite::cv::detection::YoloX yolox_tiny.onnx YOLOX (🔥🔥!!↑) 19Mb
lite::cv::detection::YoloX yolox_nano.onnx YOLOX (🔥🔥!!↑) 3.5Mb

It means that you can load the any one yolov5*.onnx and yolox_*.onnx according to your application through the same Lite.AI classes, such as YoloV5, YoloX, etc.

auto *yolov5 = new lite::cv::detection::YoloV5("yolov5x.onnx");  // for server
auto *yolov5 = new lite::cv::detection::YoloV5("yolov5l.onnx"); 
auto *yolov5 = new lite::cv::detection::YoloV5("yolov5m.onnx");  
auto *yolov5 = new lite::cv::detection::YoloV5("yolov5s.onnx");  // for mobile device 
auto *yolox = new lite::cv::detection::YoloX("yolox_x.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_l.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_m.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_s.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_tiny.onnx");  
auto *yolox = new lite::cv::detection::YoloX("yolox_nano.onnx");  // 3.5Mb only !

2.3 Model Zoo for ONNX Version.

Most of the models were converted by Lite.AI, and others were referenced from third-party libraries. The name of the class here will be different from the original repository, because different repositories have different implementations of the same algorithm. For example, ArcFace in insightface is different from ArcFace in face.evoLVe.PyTorch . ArcFace in insightface uses Arc-Loss + Softmax, while ArcFace in face.evoLVe.PyTorch uses Arc-Loss + Focal-Loss. Lite.AI uses naming to make the necessary distinctions between models from different sources. Therefore, in Lite.AI, different names of the same algorithm mean that the corresponding models come from different repositories, different implementations, or use different training data, etc. Just jump to lite.ai-demos to figure out the usage of each model in Lite.AI. ✅ means passed the test and ⚠️ means not implements yet but coming soon. For models which denoted ✅, you can use it through lite::cv::Type::Class syntax, such as lite::cv::detection::YoloV5 or lite::cv::face::detect::UltraFace. More details can be found at Examples for Lite.AI .
(Baidu Drive code: 8gin)

Class Size From Awesome File Type State Usage
YoloV5 28M yolov5 🔥🔥💥↑ lite.ai detection demo
YoloV3 236M onnx-models 🔥🔥🔥↑ - detection demo
TinyYoloV3 33M onnx-models 🔥🔥🔥↑ - detection demo
YoloV4 176M YOLOv4... 🔥🔥🔥↑ lite.ai detection demo
SSD 76M onnx-models 🔥🔥🔥↑ - detection demo
SSDMobileNetV1 27M onnx-models 🔥🔥🔥↑ - detection demo
EfficientNetLite4 49M onnx-models 🔥🔥🔥↑ - classification demo
ShuffleNetV2 8.7M onnx-models 🔥🔥🔥↑ - classification demo
FSANet 1.2M ...fsanet... 🔥↑ - face::pose demo
PFLD 1.0M pfld_106_... 🔥🔥↑ - face::align demo
UltraFace 1.1M Ultra-Light... 🔥🔥🔥↑ - face::detect demo
AgeGoogleNet 23M onnx-models 🔥🔥🔥↑ - face::attr demo
GenderGoogleNet 23M onnx-models 🔥🔥🔥↑ - face::attr demo
EmotionFerPlus 33M onnx-models 🔥🔥🔥↑ - face::attr demo
VGG16Age 514M onnx-models 🔥🔥🔥↑ - face::attr demo
VGG16Gender 512M onnx-models 🔥🔥🔥↑ - face::attr demo
SSRNet 190K SSR_Net... 🔥↑ lite.ai face::attr demo
FastStyleTransfer 6.4M onnx-models 🔥🔥🔥↑ - style demo
ArcFaceResNet 92M insightface 🔥🔥🔥↑ lite.ai faceid demo
GlintCosFace 92M insightface 🔥🔥🔥↑ lite.ai faceid demo
GlintPartialFC 170M insightface 🔥🔥🔥↑ lite.ai faceid demo
FaceNet 93M facenet... 🔥🔥🔥↑ lite.ai faceid demo
FocalArcFace 166M face.evoLVe... 🔥🔥🔥↑ lite.ai faceid demo
FocalAsiaArcFace 166M face.evoLVe... 🔥🔥🔥↑ lite.ai faceid demo
TencentCurricularFace 249M TFace 🔥🔥↑ lite.ai faceid demo
TencentCifpFace 130M TFace 🔥🔥↑ lite.ai faceid demo
CenterLossFace 280M center-loss... 🔥🔥↑ lite.ai faceid demo
SphereFace 80M sphere... 🔥🔥↑ lite.ai faceid ✅️ demo
PoseRobustFace 92M DREAM 🔥🔥↑ lite.ai faceid ✅️ demo
NaivePoseRobustFace 43M DREAM 🔥🔥↑ lite.ai faceid ✅️ demo
MobileFaceNet 3.8M MobileFace... 🔥🔥↑ lite.ai faceid demo
CavaGhostArcFace 15M cavaface... 🔥🔥↑ lite.ai faceid demo
CavaCombinedFace 250M cavaface... 🔥🔥↑ lite.ai faceid demo
Colorizer 123M colorization 🔥🔥🔥↑ lite.ai colorization demo
SubPixelCNN 234K ...PIXEL... 🔥↑ lite.ai resolution demo
DeepLabV3ResNet101 232M torchvision 🔥🔥🔥↑ lite.ai segmentation demo
DenseNet121 30.7M torchvision 🔥🔥🔥↑ lite.ai classification demo
FCNResNet101 207M torchvision 🔥🔥🔥↑ lite.ai segmentation demo
GhostNet 20M torchvision 🔥🔥🔥↑ lite.ai classification demo
HdrDNet 13M torchvision 🔥🔥🔥↑ lite.ai classification demo
IBNNet 97M torchvision 🔥🔥🔥↑ lite.ai classification demo
MobileNetV2 13M torchvision 🔥🔥🔥↑ lite.ai classification demo
ResNet 44M torchvision 🔥🔥🔥↑ lite.ai classification demo
ResNeXt 95M torchvision 🔥🔥🔥↑ lite.ai classification demo
MobileSEFocalFace - face_recog... 🔥🔥↑ lite.ai faceid ⚠️ -
EfficientEmotion - face-emo... 🔥↑ lite.ai face::attr ⚠️ -
MobileEmotion - face-emo... 🔥↑ lite.ai face::attr ⚠️ -
ReXNetEmotion - face-emo... 🔥↑ lite.ai face::attr ⚠️ -
PFLD98 - PFLD... 🔥🔥↑ lite.ai face::align ⚠️ -
MobileNetV268 - ...landmark 🔥🔥↑ lite.ai face::align ⚠️ -
MobileV2SE68 - ...landmark 🔥🔥↑ lite.ai face::align ⚠️ -
PFLD68 - ...landmark 🔥🔥↑ lite.ai face::align ⚠️ -
FaceLandmark1000 - FaceLandm... 🔥↑ lite.ai face::align ⚠️ -
MobileV1RetinaFace - ...Retinaface 🔥🔥🔥↑ lite.ai face::detect ⚠️ -
ResNetRetinaFace - ...Retinaface 🔥🔥🔥↑ lite.ai face::detect ⚠️ -
FaceBoxes - FaceBoxes 🔥🔥↑ lite.ai face::detect ⚠️ -
YoloX 3.5M YOLOX 🔥🔥!!↑ - detection demo
Expand for the pretrianed models of MNN and NCNN version.

2.3 Models for MNN version.

  • todo⚠️

2.4 Models for NCNN version.

  • todo⚠️

3. Build Lite.AI.

Build the shared lib of Lite.AI for MacOS from sources or you can download the built lib from liblite.ai.dylib|so (TODO: Linux & Windows). Note that Lite.AI uses onnxruntime as default backend, for the reason that onnxruntime supports the most of onnx's operators. For Linux and Windows, you need to build the shared libs of OpenCV and onnxruntime firstly and put then into the third_party directory. Please reference the build-docs1 for third_party.

  • Clone the Lite.AI from sources:
git clone --depth=1 -b v0.0.1 https://github.com/DefTruth/lite.ai.git  # stable
git clone --depth=1 https://github.com/DefTruth/lite.ai.git  # latest
  • For users in China, you can try:
git clone --depth=1 -b v0.0.1 https://github.com.cnpmjs.org/DefTruth/lite.ai.git  # stable
git clone --depth=1 https://github.com.cnpmjs.org/DefTruth/lite.ai.git  # latest
  • Build shared lib.
cd lite.ai
sh ./build.sh
cd ./build/lite.ai/lib && otool -L liblite.ai.0.0.1.dylib 
liblite.ai.0.0.1.dylib:
        @rpath/liblite.ai.0.0.1.dylib (compatibility version 0.0.1, current version 0.0.1)
        @rpath/libopencv_highgui.4.5.dylib (compatibility version 4.5.0, current version 4.5.2)
        @rpath/libonnxruntime.1.7.0.dylib (compatibility version 0.0.0, current version 1.7.0)
        ...
Expand for more details of How to link the shared lib of Lite.AI?
cd ../ && tree .
├── bin
├── include
│   ├── lite
│   │   ├── backend.h
│   │   ├── config.h
│   │   └── lite.h
│   └── ort
└── lib
    └── liblite.ai.0.0.1.dylib
  • Run the built examples:
cd ./build/lite.ai/bin && ls -lh | grep lite
-rwxr-xr-x  1 root  staff   301K Jun 26 23:10 liblite.ai.0.0.1.dylib
...
-rwxr-xr-x  1 root  staff   196K Jun 26 23:10 lite_yolov4
-rwxr-xr-x  1 root  staff   196K Jun 26 23:10 lite_yolov5
...
./lite_yolov5
LITEORT_DEBUG LogId: ../../../hub/onnx/cv/yolov5s.onnx
=============== Input-Dims ==============
...
detected num_anchors: 25200
generate_bboxes num: 66
Default Version Detected Boxes Num: 5
  • Link lite.ai shared lib. You need to make sure that OpenCV and onnxruntime are linked correctly. Just like:
cmake_minimum_required(VERSION 3.17)
project(testlite.ai)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE debug)
# link opencv.
set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/opencv/lib/cmake/opencv4)
find_package(OpenCV 4 REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
# link onnxruntime.
set(ONNXRUNTIME_DIR ${CMAKE_SOURCE_DIR}/onnxruntime/)
set(ONNXRUNTIME_INCLUDE_DIR ${ONNXRUNTIME_DIR}/include)
set(ONNXRUNTIME_LIBRARY_DIR ${ONNXRUNTIME_DIR}/lib)
include_directories(${ONNXRUNTIME_INCLUDE_DIR})
link_directories(${ONNXRUNTIME_LIBRARY_DIR})
# link lite.ai.
set(LITEHUB_DIR ${CMAKE_SOURCE_DIR}/lite.ai)
set(LITEHUB_INCLUDE_DIR ${LITEHUB_DIR}/include)
set(LITEHUB_LIBRARY_DIR ${LITEHUB_DIR}/lib)
include_directories(${LITEHUB_INCLUDE_DIR})
link_directories(${LITEHUB_LIBRARY_DIR})
# add your executable
add_executable(lite_yolov5 test_lite_yolov5.cpp)
target_link_libraries(lite_yolov5 lite.ai onnxruntime ${OpenCV_LIBS})

A minimum example to show you how to link the shared lib of Lite.AI correctly for your own project can be found at lite.ai-release .

4. Examples for Lite.AI.

More examples can be found at lite.ai-demos. Note that the default backend for Lite.AI is onnxruntime, for the reason that onnxruntime supports the most of onnx's operators.

4.1 Object Detection using YoloV5. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/yolov5s.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_yolov5_1.jpg";
  std::string save_img_path = "../../../logs/test_lite_yolov5_1.jpg";

  auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path); 
  std::vector<lite::cv::types::Boxf> detected_boxes;
  cv::Mat img_bgr = cv::imread(test_img_path);
  yolov5->detect(img_bgr, detected_boxes);
  
  lite::cv::utils::draw_boxes_inplace(img_bgr, detected_boxes);
  cv::imwrite(save_img_path, img_bgr);  
  
  delete yolov5;
}

The output is:

Or you can use Newest 🔥🔥 ! YOLO series's detector YOLOX . They got the similar results.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/yolox_s.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_yolox_1.jpg";
  std::string save_img_path = "../../../logs/test_lite_yolox_1.jpg";

  auto *yolox = new lite::cv::detection::YoloX(onnx_path); 
  std::vector<lite::cv::types::Boxf> detected_boxes;
  cv::Mat img_bgr = cv::imread(test_img_path);
  yolox->detect(img_bgr, detected_boxes);
  
  lite::cv::utils::draw_boxes_inplace(img_bgr, detected_boxes);
  cv::imwrite(save_img_path, img_bgr);  
  
  delete yolox;
}

The output is:

More models for general object detection.

auto *detector = new lite::cv::detection::YoloX(onnx_path); // new !!!
auto *detector = new lite::cv::detection::YoloV4(onnx_path); 
auto *detector = new lite::cv::detection::YoloV3(onnx_path); 
auto *detector = new lite::cv::detection::TinyYoloV3(onnx_path); 
auto *detector = new lite::cv::detection::SSD(onnx_path); 
auto *detector = new lite::cv::detection::SSDMobileNetV1(onnx_path); 

4.2 Segmentation using DeepLabV3ResNet101. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/deeplabv3_resnet101_coco.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_deeplabv3_resnet101.png";
  std::string save_img_path = "../../../logs/test_lite_deeplabv3_resnet101.jpg";

  auto *deeplabv3_resnet101 = new lite::cv::segmentation::DeepLabV3ResNet101(onnx_path, 16); // 16 threads

  lite::cv::types::SegmentContent content;
  cv::Mat img_bgr = cv::imread(test_img_path);
  deeplabv3_resnet101->detect(img_bgr, content);

  if (content.flag)
  {
    cv::Mat out_img;
    cv::addWeighted(img_bgr, 0.2, content.color_mat, 0.8, 0., out_img);
    cv::imwrite(save_img_path, out_img);
    if (!content.names_map.empty())
    {
      for (auto it = content.names_map.begin(); it != content.names_map.end(); ++it)
      {
        std::cout << it->first << " Name: " << it->second << std::endl;
      }
    }
  }
  delete deeplabv3_resnet101;
}

The output is:

More models for segmentation.

auto *segment = new lite::cv::segmentation::FCNResNet101(onnx_path);

4.3 Age Estimation using SSRNet . Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/ssrnet.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_ssrnet.jpg";
  std::string save_img_path = "../../../logs/test_lite_ssrnet.jpg";

  lite::cv::face::attr::SSRNet *ssrnet = new lite::cv::face::attr::SSRNet(onnx_path);

  lite::cv::types::Age age;
  cv::Mat img_bgr = cv::imread(test_img_path);
  ssrnet->detect(img_bgr, age);
  lite::cv::utils::draw_age_inplace(img_bgr, age);
  cv::imwrite(save_img_path, img_bgr);
  std::cout << "Default Version Done! Detected SSRNet Age: " << age.age << std::endl;

  delete ssrnet;
}

The output is:

More models for face attributes analysis.

auto *attribute = new lite::cv::face::attr::AgeGoogleNet(onnx_path);  
auto *attribute = new lite::cv::face::attr::GenderGoogleNet(onnx_path); 
auto *attribute = new lite::cv::face::attr::EmotionFerPlus(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Age(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Gender(onnx_path);

4.4 1000 Classes Classification using DenseNet. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/densenet121.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_densenet.jpg";

  auto *densenet = new lite::cv::classification::DenseNet(onnx_path);

  lite::cv::types::ImageNetContent content;
  cv::Mat img_bgr = cv::imread(test_img_path);
  densenet->detect(img_bgr, content);
  if (content.flag)
  {
    const unsigned int top_k = content.scores.size();
    if (top_k > 0)
    {
      for (unsigned int i = 0; i < top_k; ++i)
        std::cout << i + 1
                  << ": " << content.labels.at(i)
                  << ": " << content.texts.at(i)
                  << ": " << content.scores.at(i)
                  << std::endl;
    }
  }
  delete densenet;
}

The output is:

More models for image classification.

auto *classifier = new lite::cv::classification::EfficientNetLite4(onnx_path);  
auto *classifier = new lite::cv::classification::ShuffleNetV2(onnx_path); 
auto *classifier = new lite::cv::classification::GhostNet(onnx_path);
auto *classifier = new lite::cv::classification::HdrDNet(onnx_path);
auto *classifier = new lite::cv::classification::IBNNet(onnx_path);
auto *classifier = new lite::cv::classification::MobileNetV2(onnx_path); 
auto *classifier = new lite::cv::classification::ResNet(onnx_path); 
auto *classifier = new lite::cv::classification::ResNeXt(onnx_path);

4.5 Face Recognition using ArcFace. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/ms1mv3_arcface_r100.onnx";
  std::string test_img_path0 = "../../../examples/lite/resources/test_lite_faceid_0.png";
  std::string test_img_path1 = "../../../examples/lite/resources/test_lite_faceid_1.png";
  std::string test_img_path2 = "../../../examples/lite/resources/test_lite_faceid_2.png";

  auto *glint_arcface = new lite::cv::faceid::GlintArcFace(onnx_path);

  lite::cv::types::FaceContent face_content0, face_content1, face_content2;
  cv::Mat img_bgr0 = cv::imread(test_img_path0);
  cv::Mat img_bgr1 = cv::imread(test_img_path1);
  cv::Mat img_bgr2 = cv::imread(test_img_path2);
  glint_arcface->detect(img_bgr0, face_content0);
  glint_arcface->detect(img_bgr1, face_content1);
  glint_arcface->detect(img_bgr2, face_content2);

  if (face_content0.flag && face_content1.flag && face_content2.flag)
  {
    float sim01 = lite::cv::utils::math::cosine_similarity<float>(
        face_content0.embedding, face_content1.embedding);
    float sim02 = lite::cv::utils::math::cosine_similarity<float>(
        face_content0.embedding, face_content2.embedding);
    std::cout << "Detected Sim01: " << sim  << " Sim02: " << sim02 << std::endl;
  }

  delete glint_arcface;
}

The output is:

Detected Sim01: 0.721159 Sim02: -0.0626267

More models for face recognition.

auto *recognition = new lite::cv::faceid::GlintCosFace(onnx_path);  // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintArcFace(onnx_path);  // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintPartialFC(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::FaceNet(onnx_path);
auto *recognition = new lite::cv::faceid::FocalArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::FocalAsiaArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::TencentCurricularFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::TencentCifpFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::CenterLossFace(onnx_path);
auto *recognition = new lite::cv::faceid::SphereFace(onnx_path);
auto *recognition = new lite::cv::faceid::PoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::NaivePoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::MobileFaceNet(onnx_path); // 3.8Mb only !
auto *recognition = new lite::cv::faceid::CavaGhostArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::CavaCombinedFace(onnx_path);
4.6 Expand Examples for Face Detection.

4.6 Face Detection using UltraFace. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/ultraface-rfb-640.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_ultraface.jpg";
  std::string save_img_path = "../../../logs/test_lite_ultraface.jpg";

  auto *ultraface = new lite::cv::face::detect::UltraFace(onnx_path);

  std::vector<lite::cv::types::Boxf> detected_boxes;
  cv::Mat img_bgr = cv::imread(test_img_path);
  ultraface->detect(img_bgr, detected_boxes);
  lite::cv::utils::draw_boxes_inplace(img_bgr, detected_boxes);
  cv::imwrite(save_img_path, img_bgr);

  delete ultraface;
}

The output is:

4.7 Expand Examples for Colorization.

4.7 Colorization using colorization. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/eccv16-colorizer.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_colorizer_1.jpg";
  std::string save_img_path = "../../../logs/test_lite_eccv16_colorizer_1.jpg";
  
  auto *colorizer = new lite::cv::colorization::Colorizer(onnx_path);
  
  cv::Mat img_bgr = cv::imread(test_img_path);
  lite::cv::types::ColorizeContent colorize_content;
  colorizer->detect(img_bgr, colorize_content);
  
  if (colorize_content.flag) cv::imwrite(save_img_path, colorize_content.mat);
  delete colorizer;
}

The output is:


4.8 Expand Examples for Head Pose Estimation.

4.8 Head Pose Estimation using FSANet. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/fsanet-var.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_fsanet.jpg";
  std::string save_img_path = "../../../logs/test_lite_fsanet.jpg";

  auto *fsanet = new lite::cv::face::pose::FSANet(onnx_path);
  cv::Mat img_bgr = cv::imread(test_img_path);
  lite::cv::types::EulerAngles euler_angles;
  fsanet->detect(img_bgr, euler_angles);
  
  if (euler_angles.flag)
  {
    lite::cv::utils::draw_axis_inplace(img_bgr, euler_angles);
    cv::imwrite(save_img_path, img_bgr);
    std::cout << "yaw:" << euler_angles.yaw << " pitch:" << euler_angles.pitch << " row:" << euler_angles.roll << std::endl;
  }
  delete fsanet;
}

The output is:

4.9 Expand Examples for Face Alignment.

4.9 Facial Landmarks Detection using PFLD. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/pfld-106-v3.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_pfld.png";
  std::string save_img_path = "../../../logs/test_lite_pfld.jpg";

  auto *pfld = new lite::cv::face::align::PFLD(onnx_path);

  lite::cv::types::Landmarks landmarks;
  cv::Mat img_bgr = cv::imread(test_img_path);
  pfld->detect(img_bgr, landmarks);
  lite::cv::utils::draw_landmarks_inplace(img_bgr, landmarks);
  cv::imwrite(save_img_path, img_bgr);
  
  delete pfld;
}

The output is:

4.10 Expand Examples for Style Transfer.

4.10 Style Transfer using FastStyleTransfer. Download model from Model-Zoo2.

#include "lite/lite.h"

static void test_default()
{
  std::string onnx_path = "../../../hub/onnx/cv/style-candy-8.onnx";
  std::string test_img_path = "../../../examples/lite/resources/test_lite_fast_style_transfer.jpg";
  std::string save_img_path = "../../../logs/test_lite_fast_style_transfer_candy.jpg";
  
  auto *fast_style_transfer = new lite::cv::style::FastStyleTransfer(onnx_path);
 
  lite::cv::types::StyleContent style_content;
  cv::Mat img_bgr = cv::imread(test_img_path);
  fast_style_transfer->detect(img_bgr, style_content);

  if (style_content.flag) cv::imwrite(save_img_path, style_content.mat);
  delete fast_style_transfer;
}

The output is:


4.11 Expand Examples for Image Matting.
  • todo⚠️

5. Lite.AI API Docs.

5.1 Default Version APIs.

More details of Default Version APIs can be found at default-version-api-docs . For examples, the interface for YoloV5 is:

lite::cv::detection::YoloV5

void detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes, 
            float score_threshold = 0.25f, float iou_threshold = 0.45f,
            unsigned int topk = 100, unsigned int nms_type = NMS::OFFSET);
Expand for ONNXRuntime, MNN and NCNN version APIs.

5.2 ONNXRuntime Version APIs.

More details of ONNXRuntime Version APIs can be found at onnxruntime-version-api-docs . For examples, the interface for YoloV5 is:

lite::onnxruntime::cv::detection::YoloV5

void detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes, 
            float score_threshold = 0.25f, float iou_threshold = 0.45f,
            unsigned int topk = 100, unsigned int nms_type = NMS::OFFSET);

5.3 MNN Version APIs.

(todo⚠️: Not implementation now, coming soon.)

lite::mnn::cv::detection::YoloV5

lite::mnn::cv::detection::YoloV4

lite::mnn::cv::detection::YoloV3

lite::mnn::cv::detection::SSD

...

5.4 NCNN Version APIs.

(todo⚠️: Not implementation now, coming soon.)

lite::ncnn::cv::detection::YoloV5

lite::ncnn::cv::detection::YoloV4

lite::ncnn::cv::detection::YoloV3

lite::ncnn::cv::detection::SSD

...

6. Other Docs.

Expand for more details of Other Docs.

6.1 Docs for ONNXRuntime.

6.2 Docs for third_party.

Other build documents for different engines and different targets will be added later.

Library Target Docs
OpenCV mac-x86_64 opencv-mac-x86_64-build.zh.md
OpenCV android-arm opencv-static-android-arm-build.zh.md
onnxruntime mac-x86_64 onnxruntime-mac-x86_64-build.zh.md
onnxruntime android-arm onnxruntime-android-arm-build.zh.md
NCNN mac-x86_64 todo⚠️
MNN mac-x86_64 todo⚠️
TNN mac-x86_64 todo⚠️

7. Acknowledgements.

Many thanks to the following projects. All the Lite.AI's models are sourced from these repos. Just jump to and star 🌟👉🏻 the any awesome one you are interested in ! Have a good travel ~ 🙃🤪🍀