-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresult_comparison.py
46 lines (35 loc) · 1.39 KB
/
result_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
import pandas as pds
from tabulate import tabulate
from glob import glob
import cPickle as pickle
# from tabulate import tabulate
from max_cover import argmax_k_coverage
# name path name path
# names = [name for i, name in enumerate(sys.argv[1:]) if i % 2 == 0]
# paths = [path for i, path in enumerate(sys.argv[1:]) if i % 2 == 1]
paths = glob("tmp/lda-25-topics/result-*U=5*interactions=False*.pkl")
names = map(lambda n:
n.replace('tmp/lda-25-topics/result-', '').replace('.pkl', ''),
paths)
K = 5
table = []
for name, path in zip(names, paths):
trees = pickle.load(open(path))
nodes_of_trees = [set(t.nodes()) for t in trees]
selected_ids = argmax_k_coverage(nodes_of_trees, K)
selected_trees = [trees[i] for i in selected_ids]
nodes_list = [t.nodes() for t in selected_trees]
unique_nodes = reduce(lambda acc, nodes: acc | set(nodes),
nodes_list,
set())
row = [name]
row += [len(nodes) for nodes in nodes_list]
row.append(len(unique_nodes))
table.append(row)
df = pds.DataFrame(table, columns=['', '#1', '#2', '#3', '#4', '#5', 'total'])
print(tabulate(df.sort(['total'], ascending=False),
headers=list(df.columns),
tablefmt='psql'))
# print tabulate(table, headers=['', '#1', '#2', '#3', '#4', '#5', 'total'],
# tablefmt='orgtbl')