-
Notifications
You must be signed in to change notification settings - Fork 1
/
interactions.py
644 lines (553 loc) · 22.9 KB
/
interactions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import os
import re
import nltk
import copy
import logging
import time
import numpy as np
import networkx as nx
import pandas as pd
import cPickle as pkl
from itertools import izip
from datetime import datetime as dt
from memory_profiler import profile
from scipy.sparse import csr_matrix, issparse
from sklearn.feature_extraction.text import TfidfTransformer, TfidfVectorizer
from scipy.spatial.distance import cosine
from scipy.spatial.distance import jaccard
from util import load_items_by_line, get_datetime, compose, json_load
from hig import construct_hig_from_interactions
from meta_graph import convert_to_meta_graph, \
convert_to_meta_graph_undirected
CURDIR = os.path.dirname(os.path.abspath(__file__))
logging.basicConfig(format="%(asctime)s;%(levelname)s;%(message)s",
datefmt="%Y-%m-%d %H:%M:%S")
logger = logging.getLogger("InteractionsUtil")
logger.setLevel(logging.DEBUG)
class InteractionsUtil(object):
"""
To create a topical meta graph, do the following:
- get_meta_graph
- add_topics_to_graph
- assign_vertex_weight
- round_vertex_weight(if necessary)
"""
VERTEX_REWARD_KEY = 'r'
EDGE_COST_KEY = 'c'
stoplist = load_items_by_line(os.path.join(CURDIR, 'lemur-stopwords.txt'))
# valid_token_regexp = re.compile('^[a-z]+$')
valid_token_regexp = re.compile('^[a-zA-Z][a-zA-Z0-9]?[_()\-a-zA-Z0-9]+$')
@classmethod
def clean_interactions(self, interactions, undirected=False,
convert_time=True):
"""Some cleaning. Functional
"""
new_interactions = []
if isinstance(interactions, pd.DataFrame):
iters = interactions.iterrows()
else:
iters = enumerate(interactions)
for row_n, i in iters:
if row_n % 5000 == 0:
logger.debug("cleaning: {} / {}".format(
row_n,
len(interactions))
)
i = copy.deepcopy(i)
if not undirected:
# remove duplicate recipients
i['recipient_ids'] = list(set(i['recipient_ids']))
else:
i['participant_ids'] = list(set(i['participant_ids']))
if 'timestamp' in i:
i['datetime'] = i['timestamp']
if convert_time:
# normalize datetime and timestamp
try:
i['datetime'] = get_datetime(i['datetime'])
except TypeError:
logger.warn(
'Error parsing datetime, {} of type {}'.format(
i['datetime'],
type(i['datetime'])
)
)
continue
new_interactions.append(i)
return new_interactions
@classmethod
def decompose_interactions(cls, interactions):
new_interactions = []
for i in interactions:
recs = set(i['recipient_ids']) # remove duplicates
if len(recs) > 1:
new_node_name = lambda rec: u'{}.{}'.format(
i['message_id'],
rec)
decomposed_node_names = map(new_node_name, recs)
for rec in recs:
interaction = copy.deepcopy(i)
interaction['recipient_ids'] = [rec]
# the transformed message_id
# can be different from original
interaction['message_id'] = new_node_name(rec)
interaction['original_message_id'] = i['message_id']
# to avoid document vector being calculated multiple times,
# we add this additional attr
interaction['peers'] = decomposed_node_names
new_interactions.append(interaction)
else:
interaction = copy.deepcopy(i)
interaction['message_id'] = unicode(i['message_id'])
interaction['original_message_id'] = i['message_id']
interaction['peers'] = []
new_interactions.append(interaction)
return new_interactions
@classmethod
def unzip_interactions(cls, interactions):
"""
sort interactions by time and
convert list of interactions to
tuple of (interaction_names, sources, targets, datetimes)
"""
# sorting is important
interactions = sorted(interactions, key=lambda r: r['datetime'])
interaction_names = [i['message_id'] for i in interactions]
sources = [i['sender_id'] for i in interactions]
targets = [i['recipient_ids'] for i in interactions]
datetimes = [i['datetime'] for i in interactions]
return (interaction_names, sources, targets, datetimes)
@classmethod
def unzip_interactions_undirected(cls, interactions):
"""
undirected case
tuple of (interaction_names, participants, datetimes)
"""
# sorting is important
interactions = sorted(interactions, key=lambda r: r['datetime'])
interaction_names = [i['message_id'] for i in interactions]
particpants = [i['participant_ids'] for i in interactions]
datetimes = [i['datetime'] for i in interactions]
return (interaction_names, particpants, datetimes)
@classmethod
def get_meta_graph(cls, interactions,
undirected=False,
preprune_secs=None,
decompose_interactions=True,
remove_singleton=True,
given_topics=False,
apply_pagerank=False,
convert_time=True):
"""
Return the meta graph together with temporally sorted interactions
Decompose interactions if requested
"""
if decompose_interactions:
if undirected:
raise ValueError('Non-sense to deompose for undirected graph')
logger.info("decomposing and cleaning interactions...")
interactions = cls.decompose_interactions(
cls.clean_interactions(
interactions,
undirected=undirected,
convert_time=convert_time
)
)
else:
logger.info("cleaning interactions...")
interactions = cls.clean_interactions(
interactions,
undirected=undirected,
convert_time=convert_time
)
if not undirected:
logger.info('processing **directed** interactions')
g = convert_to_meta_graph(*cls.unzip_interactions(interactions),
preprune_secs=preprune_secs)
else:
logger.info('processing **undirected** interactions')
g = convert_to_meta_graph_undirected(
*cls.unzip_interactions_undirected(interactions),
preprune_secs=preprune_secs
)
for i in interactions:
n = i['message_id']
if decompose_interactions:
g.node[n]['message_id'] = i['original_message_id']
else:
g.node[n]['message_id'] = i['message_id']
if not given_topics:
g.node[n]['body'] = i['body']
g.node[n]['subject'] = i['subject']
else:
g.node[n]['topics'] = i['topics']
g.node[n]['datetime'] = i['datetime']
if 'hashtags' in i:
g.node[n]['hashtags'] = i['hashtags']
g.node[n][cls.VERTEX_REWARD_KEY] = 1
if decompose_interactions:
g.node[n]['peers'] = i['peers']
if undirected:
g.node[n]['participant_ids'] = i['participant_ids']
else:
g.node[n]['sender_id'] = i['sender_id']
g.node[n]['recipient_ids'] = i['recipient_ids']
if remove_singleton:
for n in g.nodes():
if g.degree(n) == 0:
g.remove_node(n)
# override reward scores
if apply_pagerank:
logger.info('Appling pagerank to get node rewark')
g = cls.add_rewards_to_nodes_using_pagerank(g, interactions)
return g
@classmethod
def add_recency(cls, g,
alpha=1.0, tau=0.8,
timestamp_converter=lambda s: s):
"""
substract some edge weight by the recency of the edge,
e.g, \alpha \tau^{t2 - t1}
"""
raise Exception("Not in use")
for s, t in g.edges_iter():
t1 = timestamp_converter(g.node[s]['timestamp'])
t2 = timestamp_converter(g.node[t]['timestamp'])
diff_t = t2 - t1
recency = alpha * (tau ** diff_t)
g[s][t]['orig_c'] = g[s][t][cls.EDGE_COST_KEY]
g[s][t]['recency'] = recency
g[s][t][cls.EDGE_COST_KEY] -= recency
if g[s][t][cls.EDGE_COST_KEY] < 0:
g[s][t][cls.EDGE_COST_KEY] = 0
return g
@classmethod
def tokenize_document(cls, doc):
return [
word for word in nltk.word_tokenize(doc.lower())
if (word not in cls.stoplist and
cls.valid_token_regexp.match(word) and
len(word) > 2 and len(word) < 15)
]
@classmethod
def add_topics_to_graph(cls, g, lda_model, dictionary, msg_ids):
"""
"""
if isinstance(g.nodes()[0], int):
convert_id = lambda s: int(s)
else:
convert_id = lambda s: s
mid2topic = {
convert_id(mid): topic
for topic, mid in izip(lda_model.load_document_topics(), msg_ids)
}
N = g.number_of_nodes()
for i, n in enumerate(g.nodes_iter()):
if i % 1000 == 0:
logger.debug('adding topics: {} / {}'.format(i, N))
# doc = u'{} {}'.format(g.node[n]['subject'], g.node[n]['body'])
# bow = dictionary.doc2bow(cls.tokenize_document(doc))
# topic_dist = lda_model.get_document_topics(
# bow,
# minimum_probability=0
# )
# g.node[n]['topics'] = np.asarray([v for _, v in topic_dist],
# dtype=np.float)
# g.node[n]['doc_bow'] = bow
topic = np.asarray([w for t, w in mid2topic[g.node[n]['message_id']]])
g.node[n]['topics'] = topic
return g
@classmethod
def build_bow_matrix(cls, g, dictionary):
logger.debug('Building BoW matrix...')
N = g.number_of_nodes()
row_ind = []
col_ind = []
data = []
n2i = {n: i
for i, n in enumerate(g.nodes_iter())}
for i, n in enumerate(g.nodes_iter()):
if i % 1000 == 0:
logger.debug('adding BoW: {} / {}'.format(i, N))
doc = u'{} {}'.format(g.node[n]['subject'], g.node[n]['body'])
for word_id, cnt in dictionary.doc2bow(
cls.tokenize_document(doc)):
row_ind.append(i)
col_ind.append(word_id)
data.append(cnt)
return (n2i,
csr_matrix(
(
data,
(row_ind, col_ind)
),
shape=(N, len(dictionary.keys())))
)
@classmethod
def add_hastag_bow_to_graph(cls, g):
text = [' '.join(g.node[n]['hashtags'])
for n in g.nodes_iter()]
tfidf = TfidfVectorizer(preprocessor=None,
tokenizer=lambda s: s.split(),
stop_words=None)
mat = tfidf.fit_transform(text)
N = g.number_of_nodes()
for i, n in enumerate(g.nodes_iter()):
if i % 1000 == 0:
logger.debug('adding hashtag BoW: {} / {}'.format(i, N))
g.node[n]['hashtag_bow'] = mat[i, :]
return g
@classmethod
def add_bow_to_graph(cls, g, dictionary):
node2row, bow_mat = cls.build_bow_matrix(g, dictionary)
tfidf = TfidfTransformer()
tfidf_mat = tfidf.fit_transform(bow_mat)
# build matrix
N = g.number_of_nodes()
for i, n in enumerate(g.nodes_iter()):
if i % 1000 == 0:
logger.debug('adding BoW: {} / {}'.format(i, N))
g.node[n]['bow'] = tfidf_mat[node2row[n], :]
print('dumping tfidf vectorizer')
pkl.dump(tfidf, open('/cs/home/hxiao/code/lst/tmp/tfidf.pkl', 'w'))
return g
@classmethod
def add_rewards_to_nodes(cls, g, reward_func):
for n in g.nodes_iter():
g.node[n][cls.VERTEX_REWARD_KEY] = reward_func(n)
return g
@classmethod
def add_rewards_to_nodes_using_pagerank(cls,
g, interactions,
pagerank_func=nx.pagerank,
**pr_kwargs):
hig = construct_hig_from_interactions(interactions)
pr = nx.pagerank(hig, **pr_kwargs)
reward_func = lambda n: pr.get(n, 0.0)
return cls.add_rewards_to_nodes(g, reward_func)
@classmethod
def filter_dag_given_root(cls, g, r, filter_func):
"""filter nodes given root and some filter function
Return:
a DAG, sub_g of which all nodes in sub_g passes filter_func
"""
dag = nx.DiGraph()
stack = [(r, None)] # current node and ancestor parent
# prevent re-push impossible nodes
# e.g: A, B, C -> bad_nodes
# black_node_set = set()
# prevent re-pushing pushed edges
# e.g: A, B, C, -> good_node -> C, E, F
# white_edge_set = set()
failed_nodes = set()
expanded_nodes = set()
while len(stack) > 0:
node, parent = stack.pop()
dag.add_node(node, g.node[node])
if parent is not None:
dag.add_edge(parent, node, g[parent][node])
if node not in expanded_nodes:
for child in g.neighbors(node):
if child not in failed_nodes:
if filter_func(child):
stack.append((child, node))
else:
failed_nodes.add(child)
expanded_nodes.add(node)
return dag
@classmethod
def get_rooted_subgraph_within_timespan(cls, g, r, secs):
"""collect the subtrees, st, rooted at r that all nodes in st
are within a timeframe of length secs start from r['datetime']
"""
if isinstance(g.node[g.nodes()[0]]['datetime'], dt):
func = (lambda n:
((g.node[n]['datetime'] - g.node[r]['datetime']).total_seconds() <= secs))
else:
func = (lambda n:
((g.node[n]['datetime'] - g.node[r]['datetime']) <= secs))
return cls.filter_dag_given_root(
g, r, func
)
@classmethod
def add_penalty_to_self_talking_edges(cls, g, penalty):
for s, t in g.edges_iter():
if g.node[s]['sender_id'] == g.node[t]['sender_id']:
# print('before:', g[s][t][cls.EDGE_COST_KEY])
g[s][t][cls.EDGE_COST_KEY] += penalty
# print('after:', g[s][t][cls.EDGE_COST_KEY])
return g
@classmethod
def assign_edge_weights(cls, g,
dist_func,
fields_with_weights={'topics': 1}):
"""
TODO: can be parallelized
"""
N = g.number_of_edges()
dists_mat = np.zeros((N, len(fields_with_weights)))
fields, fields_weight = fields_with_weights.keys(), \
fields_with_weights.values()
for i, (s, t) in enumerate(g.edges_iter()):
if i % 10000 == 0:
logger.debug('adding edge cost: {}/{}'.format(i, N))
for j, f in enumerate(fields):
if issparse(g.node[s][f]):
array1 = np.array(g.node[s][f].todense()).ravel()
else:
array1 = np.array(g.node[s][f])
if issparse(g.node[t][f]):
array2 = np.array(g.node[t][f].todense()).ravel()
else:
array2 = np.array(g.node[t][f])
# at least one is all-zero
if not array1.any() or not array2.any():
dists_mat[i, j] = 1
else:
if f == 'hashtag_bow':
# special treatment to `hashtag_bow`
dists_mat[i, j] = jaccard(
array1,
array2
)
else:
dists_mat[i, j] = dist_func(
array1,
array2
)
assert not np.isinf(dists_mat[i, j])
weight_mat = np.matrix([fields_weight]).T
dist_mat = np.abs(np.matrix(dists_mat) * weight_mat)
for i, (s, t) in enumerate(g.edges_iter()):
g[s][t][cls.EDGE_COST_KEY] = dist_mat[i, 0]
assert not np.isinf(g[s][t][cls.EDGE_COST_KEY]), \
(g.node[s]['bow'].nonzero(),
g.node[t]['bow'].nonzero())
return g
@classmethod
def get_topic_meta_graph_from_synthetic(cls,
path,
preprune_secs,
**kwargs):
return cls.get_topic_meta_graph(json_load(path),
cosine,
preprune_secs=preprune_secs,
decompose_interactions=False,
given_topics=True,
convert_time=False,
**kwargs
)
@classmethod
def get_topic_meta_graph(cls, interactions,
msg_ids,
dist_func,
lda_model=None, dictionary=None,
undirected=False,
preprune_secs=None,
decompose_interactions=True,
remove_singleton=True,
given_topics=False,
apply_pagerank=False,
distance_weights={'topics': 1},
convert_time=True,
# consider_recency=False,
# alpha=1.0, tau=0.8,
# timestamp_converter=lambda s: s,
# self_talking_penalty=0
):
logger.debug('getting meta graph...')
mg = cls.get_meta_graph(interactions,
undirected=undirected,
decompose_interactions=decompose_interactions,
preprune_secs=preprune_secs,
remove_singleton=remove_singleton,
given_topics=given_topics,
apply_pagerank=apply_pagerank,
convert_time=convert_time)
if not given_topics:
for k in distance_weights:
assert k in ('bow', 'topics', 'hashtag_bow')
if 'topics' in distance_weights and distance_weights['topics'] > 0:
logger.debug('adding topics...')
mg = cls.add_topics_to_graph(
mg,
lda_model,
dictionary,
msg_ids=msg_ids
)
if 'bow' in distance_weights and distance_weights['bow'] > 0:
logger.debug('adding bow...')
mg = cls.add_bow_to_graph(
mg,
dictionary
)
if 'hashtag_bow' in distance_weights and \
distance_weights['hashtag_bow'] > 0:
logger.debug('adding hashtag bow...')
mg = cls.add_hastag_bow_to_graph(mg)
else:
logger.info('topics are given')
for n in mg.nodes_iter():
mg.node[n]['topics'] = np.array(mg.node[n]['topics'])
logger.debug('assiging edge weights')
g = cls.assign_edge_weights(mg,
dist_func,
distance_weights
)
# if self_talking_penalty:
# logger.debug('adding self-talking penalty')
# g = cls.add_penalty_to_self_talking_edges(g, self_talking_penalty)
# if consider_recency:
# g = cls.add_recency(g,
# alpha=alpha,
# tau=tau,
# timestamp_converter=timestamp_converter)
return g
@classmethod
def compactize_meta_graph(cls, g, map_nodes=True):
"""remove unnecessary fields and convert node name to integer
"""
g = g.copy()
# remove topics, body, subject to save space
fields = ['subject', 'body', 'peers', 'doc_bow']
for n in g.nodes():
for f in fields:
if f in g.node[n]:
del g.node[n][f]
if map_nodes:
# map node id to integer
node_str2int = {n: i
for i, n in enumerate(g.nodes())}
return (nx.relabel_nodes(g,
mapping=node_str2int, copy=True),
node_str2int)
else:
return g
@classmethod
def preprune_edges_by_timespan(cls, g, secs):
"""for each node, prune its children nodes
that are temporally far away from it
"""
if isinstance(g.node[g.nodes()[0]]['datetime'], dt):
is_datetime = True
else:
is_datetime = False
g = g.copy()
for n in g.nodes():
nbrs = g.neighbors(n)
for nb in nbrs:
time_diff = (g.node[nb]['datetime'] - g.node[n]['datetime'])
if is_datetime:
time_diff = time_diff.total_seconds()
if time_diff > secs:
g.remove_edge(n, nb)
return g
clean_decom_unzip = compose(
InteractionsUtil.clean_interactions,
InteractionsUtil.decompose_interactions,
InteractionsUtil.unzip_interactions
)
clean_unzip = compose(
InteractionsUtil.clean_interactions,
InteractionsUtil.unzip_interactions
)