Skip to content

xianglin226/Multi-SC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-SC

Description

Our pipeline leverages a multimodal constraint autoencoder (scHCAE) to integrate the multiomics data during the clustering process and a matrix factorization-based model (scMF) to predict target genes regulated by a TF.

Architectural of scHCAE

Architectural of scHCAE

Architectural of scMF

Architectural of scMF

Usage

Prerequisites

  • Python 3.8 or higher
  • Required packages: torch, sklearn, scipy, scanpy, h5py, numpys, pandas

Setup

git clone https://github.com/xianglin226/Multi-SC.git

Running scHCAE

To run the scHCAE for clustering with a specified number of clusters, use the following command:

python -u run_scMultiCluster3.py \
 --n_clusters 6 \
 --data_file GSE178707_neatseq_lane1.h5

Running scMF

To predict target genes regulated by TFs using scMF, run:

python -u run_scMF.py \
 --data_file processedinput_scMF_lane1.h5

Example Data

The example data can be access here.

Clustering Data

GSE178707_neatseq_lane1.h5
GSE178707_neatseq_lane2.h5
GSM5123951_TEAseq_well1.h5

Structure

  • X1: Gene expression data (RNA)
  • X2: Protein expression data (ADT)
  • X3: Chromatin accessibility data (ATAC)
  • X4: Chromatin accessibility data (ATAC) mapped to gene features
  • Genes: Gene features (rows of X1)
  • ADT: Surface protein features (rows of X2)
  • Peaks: Peak features (rows of X3)
  • GeneFromPeaks: Gene features (rows of X4)
  • Barcode: Cell barcodes

MF Data

processedinput_scMF_lane1.h5
processedinput_scMF_lane1.h5

  • B: ADT-to-cell matrix
  • W: Gene-to-ADT matrix
  • X: Cell-to-gene matrix

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages