Skip to content

A model-based constrained deep learning clustering approach for spatial-resolved single-cell data

License

Notifications You must be signed in to change notification settings

xianglin226/DSSC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSSC

A model-based constrained deep learning clustering approach for spatial-resolved single-cell data
Model structure

Dependencies in Python

Python 3.8.1

Pytorch 1.6.0

Scanpy 1.6.0

SKlearn 0.22.1

Numpy 1.18.1

h5py 2.9.0

munkres 1.1.4

dgl 0.8.0

All experiments of DSSC in this study are conducted on Nvidia Tesla P100 (16G) GPU.

#The input data should be in h5 format with:
(1) "X" - count matrix
(2) "Y" - true labels (if available)
(3) "Pos" - spatial coordinate
(4) "Genes" - feature names (Use to build constraints)

Dependencies in R

R 4.1.0

Seurat 4.2.0

cccd 1.5

rhdf5 2.38.1

ggplot2 3.3.6

Run DSSC

  1. Build constraints (See make_links_from_Markers.R)
  2. Run DSSC (See run_DSSC.sh, then run.sh)

Cite this work

Lin, X., Gao, L., Whitener, N., Ahmed, A., & Wei, Z. (2022). A model-based constrained deep learning clustering approach for spatially resolved single-cell data. Genome Research, 32(10), 1906-1917.

About

A model-based constrained deep learning clustering approach for spatial-resolved single-cell data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published