-
Notifications
You must be signed in to change notification settings - Fork 27
/
process_out_data.py
438 lines (366 loc) · 15.9 KB
/
process_out_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
import argparse
import numpy as np
import matplotlib.pyplot as plt
from warnings import warn
from collections import OrderedDict as OD
from _spaun.utils import conf_interval
parser = argparse.ArgumentParser(description='Script for analyzing spaun2.0' +
'results.')
parser.add_argument('--data_dir', type=str, default='data',
help='Probe directory.')
parser.add_argument('-p', type=str, default='probe_data',
help='Probe data filename prefix. E.g. probe_data')
parser.add_argument('-n', type=str, default='LIF_512',
help='Probe data neuron type str. E.g. LIF_512')
parser.add_argument('--tag', type=str, default=None, nargs="*",
help='Probe data tag str.')
parser.add_argument('-s', type=str, default='', nargs="*",
help='Probe data stimulus str. E.g. A0[0]@XXX')
parser.add_argument('--output_file', type=str, default=None,
help='Ouput data file name.')
parser.add_argument('-a', action='store_true',
help='Supply to append data to output file. Default is ' +
'to overwrite the file.')
parser.add_argument('-r', action='store_true',
help='Supply to read data from output file. No ' +
'additional log file processing is done.')
args = parser.parse_args()
response_strs = ['z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', '-', '=']
num_list_strs = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '-']
def mass_str_replace(input_str, search_list, replace_list):
# Note: replace_list must be the same len as search_list, or a single
# string.
if not isinstance(replace_list, str) and (len(search_list) !=
len(replace_list)):
raise RuntimeError('Mismatching replace and search list terms')
# Make a single string replace_list into a list
if isinstance(replace_list, str):
replace_list = [replace_list] * len(search_list)
# Do the string replacement
for i, item in enumerate(search_list):
input_str = input_str.replace(item, replace_list[i])
return input_str
def remove_MNIST_strs(task_info_str):
str_split = task_info_str.split('(')
for i, sub_str in enumerate(str_split):
if ')' in sub_str:
sub_str_split = sub_str.split(',', 1)
str_split[i] = sub_str_split[1][:-2].strip()
return ''.join(str_split)
# Process probe data file entry
def process_line(task_str, task_data_str):
# Ignore any responses that make it into the task string
task_str = mass_str_replace(task_str, response_strs, '')
# Process task_data_str into component bits
# For all tasks except learning task, extract spaun's answer
if task_str in ['A0', 'A1', 'A3', 'A4', 'A5', 'A6', 'A7']:
# Split the task data string into before and after the question mark
task_data_split = task_data_str.split('?', 1)
# The task information is before the question mark
task_info = task_data_split[0].replace("'", '')
# Filter out the MNIST digits
task_info = remove_MNIST_strs(task_info)
# Record special characters
has_F = 'F' in task_info
has_R = 'R' in task_info
has_P = 'P' in task_info
has_K = 'K' in task_info
# Split up the different components of the task info
task_info_split = task_info.split(']')
if task_info_split[-1] == '':
task_info_split = task_info_split[:-1]
# Remove [ ]'s and special characters from each part of task_info_split
for i in range(len(task_info_split)):
task_info_split[i] = \
mass_str_replace(task_info_split[i],
['[', ']', 'F', 'R', 'P', 'K', '-'], '')
# Spaun's answer is after the question mark
task_answer_spaun = \
np.array(list(mass_str_replace(task_data_split[1],
response_strs, num_list_strs)))
if len(task_answer_spaun) == 0:
return (None, None)
# ------ Reference answer generation ------
if task_str in ['A0', 'A1', 'A3']:
# For copy-draw, classification, memory task
task_info = np.array(list(task_info_split[0]))
if has_R:
task_answer_ref = task_info[-1::-1]
else:
task_answer_ref = task_info
elif task_str == 'A4':
# For counting tasks
start_num = int(task_info_split[0])
count_num = int(task_info_split[1])
ans_num = start_num + count_num
# Ignore invalid task options
if ans_num > 9:
task_str = 'INVALID'
warn('A4: Computed answer > 9')
task_answer_ref = np.array([str(ans_num)])
elif task_str == 'A5':
# QA task
num_list = map(int, list(task_info_split[0]))
probe_num = int(task_info_split[1])
if has_P:
task_answer_ref = np.array([str(num_list[probe_num - 1])])
elif has_K:
task_answer_ref = np.array([str(num_list.index(probe_num) + 1)])
else:
task_str = 'INVALID'
warn('A5: No valid P/K for QA task')
elif task_str == 'A6':
from sets import Set
# RVC task
if len(task_info_split) % 2:
match_list = None
for i in range(len(task_info_split) / 2):
list1 = np.array(list(task_info_split[i * 2]))
list2 = np.array(list(task_info_split[i * 2 + 1]))
if match_list is None:
match_list = [Set(np.where(list1 == item)[0])
for item in list2]
else:
# TODO: Check for inconsistencies across pairs
if len(list2) != len(match_list):
warn('A6: Inconsistent RVC ref answer lengths.')
task_str = 'INVALID'
else:
match_list = [match_list[j] &
Set(np.where(list1 == list2[j])[0])
for j in range(len(match_list))]
list1 = np.array(list(task_info_split[-1]))
task_answer_ref = np.array([list1[list(set_list)[0]]
for set_list in match_list])
else:
task_str = 'INVALID'
warn('A6: Invalid RVC task. No question list given.')
elif task_str == 'A7':
# Raven's induction task
# Induction task comes in 3 forms: changing list len, and changing
# number relations, identical lists
col_count = 1
induction_diff = None
induction_len_change = None
induction_identity = None
for i in range(1, len(task_info_split)):
if col_count % 3 == 0:
col_count += 1
continue
list1 = map(int, np.array(list(task_info_split[i - 1])))
list2 = map(int, np.array(list(task_info_split[i])))
# Handle the following cases:
# 1. Unchanging list lengths of len 1
if len(list1) == len(list2) == 1:
diff = list2[0] - list1[0]
if induction_diff is None:
induction_diff = diff
if induction_diff != diff:
warn('A7: Inconsistent change between induction items')
task_str = 'INVALID'
# 2. Changing list lengths, but containing identical items
elif (list1[0] == list2[0]) and (len(list1) != len(list2)):
len_change = len(list2) - len(list1)
if induction_len_change is None:
induction_len_change = len_change
if induction_len_change != len_change:
warn('A7: Inconsistent change between list lenghts')
task_str = 'INVALID'
elif (len(list1) == len(list2)) and (list1 == list2):
induction_identity = True
else:
warn('A7: Unhandled induction task type')
task_str = 'INVALID'
# Handle transition to next row
col_count += 1
def spaun_response_to_int(c):
return int(c) if c.isdigit() else -1
list1 = map(spaun_response_to_int, list(task_info_split[-1]))
if induction_diff is not None and induction_len_change is None and \
induction_identity is None:
task_answer_ref = np.array(map(str, [list1[0] + induction_diff]))
elif (induction_len_change is not None and induction_diff is None and
induction_identity is None):
task_answer_ref = np.array(map(str,
[list1[0]] * (len(list1) + len_change)))
elif (induction_len_change is None and induction_diff is None and
induction_identity is not None):
task_answer_ref = np.array(map(str, list1))
else:
warn('A7: Multiple induction types encountered?')
task_str = 'INVALID'
# Format the task answer list (make the same length as the reference
# answer list). Applies to all but learning task
if task_str == 'INVALID':
return task_str, np.array([0])
if task_str in ['A0', 'A1', 'A3', 'A4', 'A5', 'A6', 'A7']:
task_answer = np.chararray(task_answer_ref.shape)
task_answer[:] = ''
task_answer_len = min(len(task_answer_ref), len(task_answer_spaun))
task_answer[:task_answer_len] = task_answer_spaun[:task_answer_len]
# DEBUG
# print task_data_str, task_answer, task_answer_ref
else:
print task_data_str
if task_str in ['A0', 'A1', 'A3']:
# For memory, recognition, copy drawing tasks, check recall accuracy
# per item
return ('_'.join([task_str, str(len(task_answer_ref))]),
map(int, task_answer == task_answer_ref))
if task_str in ['A4', 'A5', 'A6', 'A7']:
# For other non-learning tasks, check accuracy as wholesale correct /
# incorrect
if task_answer[0] == '-':
return (None, None)
return ('_'.join([task_str, str(len(task_answer_ref))]),
[int(np.all(task_answer == task_answer_ref))])
# Fix dash in stimulus tag
# Process multiple stimuli and/or tag options
s_list = []
t_list = []
if args.tag is not None or len(args.s) > 0:
if args.s == '':
s_list = [None] * len(args.tag)
elif len(args.s) == 1 and args.tag is not None:
s_list = [args.s[0]] * len(args.tag)
else:
s_list = list(args.s)
if args.tag is None:
t_list = [None] * len(args.s)
elif len(args.tag) == 1 and args.s != '':
t_list = [args.tag[0]] * len(args.s)
else:
t_list = list(args.tag)
print args.s == '', args.tag
print s_list, t_list
if len(s_list) != len(t_list):
raise RuntimeError("-s and --tag options need to have the same length")
# Process probe data file
processed_results = OD()
probe_dir = args.data_dir
for stim_str, tag_str in zip(s_list, t_list):
print "OPTION: %s, %s" % (stim_str, tag_str)
str_prefix = '+'.join([args.p, args.n])
if stim_str is not None and len(stim_str) > 0:
str_prefix = '+'.join([str_prefix, stim_str])[:150]
if tag_str is not None:
str_suffix = '(' + tag_str + ')_log.txt'
else:
str_suffix = '_log.txt'
num_tasks = 0
num_null_responses = 0
for filename in os.listdir(probe_dir):
if filename[-len(str_suffix):] == str_suffix and \
filename[:len(str_prefix)] == str_prefix and not args.r:
print "PROCESSING: " + os.path.join(probe_dir, filename)
probe_file = open(os.path.join(probe_dir, filename), 'r')
for line in probe_file.readlines():
if line[0] not in ['#', '>'] and line.strip() != '':
task_info_split = line.split('[', 1)
task_str = task_info_split[0].strip()
task_data = task_info_split[1].strip()
task_str, task_result = process_line(task_str, task_data)
if task_str is not None:
if tag_str is None:
tt_str = task_str
else:
tt_str = "+".join([task_str, tag_str])
if tt_str not in processed_results:
processed_results[tt_str] = [task_result]
else:
processed_results[tt_str].append(task_result)
else:
# Increase the count of null responses
num_null_responses += 1
# Keep track of the number of tasks that have been done
num_tasks += 1
# Convert all data structures in processed results to np arrays
for task in processed_results:
processed_results[task] = np.array(processed_results[task])
# Write collected data to file
if t_list[0] is None:
t_list = []
if s_list[0] is None:
s_list = []
str_prefix = '+'.join([args.p, args.n])
str_prefix += '+' + '#'.join(s_list + t_list)
str_prefix = str_prefix[:64]
if args.output_file is None:
output_file = '+'.join(['results', str_prefix]) + '.npz'
else:
output_file = args.output_file
output_filepath = os.path.join(probe_dir, output_file)
if args.a or args.r:
old_result_data = np.load(output_filepath, encoding='latin1')
old_results = dict(old_result_data)
for key in processed_results:
if key in old_results:
old_data = old_results[key]
combined_dim = processed_results[key].shape[1]
combined_len = (processed_results[key].shape[0] +
old_data.shape[0])
combined_results = np.zeros((combined_len, combined_dim))
combined_results[:old_data.shape[0], :] = old_data
combined_results[old_data.shape[0]:, :] = processed_results[key]
old_results[key] = combined_results
else:
old_results[key] = processed_results[key]
processed_results = old_results
if not args.r:
# Write new data to file
np.savez_compressed(output_filepath, **processed_results)
# DEBUG
# for key in processed_results:
# print ">>>>> %s <<<<<" % key
# for d in processed_results[key]:
# print d
# Compute CI and plot data
ci_data_filepath = output_filepath[:-4] + '_ci.npz'
if not args.r:
ci_data = OD()
for key in processed_results:
results = processed_results[key]
ci_data[key] = \
np.array([list(conf_interval(results[:, i]))
for i in range(results.shape[1])])
# Format: [0]: mean, [1]: low, [2]: high
# Write CI data to file
np.savez_compressed(ci_data_filepath, **ci_data)
else:
ci_data = dict(np.load(ci_data_filepath, encoding='latin1'))
# Print CI data
print "CI Data: ", ci_data
# Print task run data
print "Number of tasks: ", num_tasks
print "Number of null responses: ", num_null_responses
if num_tasks > 0:
print "Percentage of null responses: ", (1.0 * num_null_responses /
num_tasks)
plt.figure(1, figsize=(18, 9))
legend_list = []
max_x = 0
plot_jitter = 0.05
num_plots = len(ci_data.keys())
# Plot results
for n, task in enumerate(ci_data.keys()):
data = ci_data[task]
xvals = np.arange(data.shape[0]) + 1
means = data[:, 0]
lows = data[:, 1]
highs = data[:, 2]
plt.figure(figsize=(18, 9))
plt.errorbar(xvals, means, yerr=[means - lows, highs - means])
plt.xlim(0.5, data.shape[0] + 0.5)
plt.ylim(0, 1)
max_x = max(max_x, data.shape[0])
plt.figure(1)
plt.errorbar(xvals + (n - num_plots // 2) * plot_jitter, means,
yerr=[means - lows, highs - means])
legend_list.append(task)
plt.figure(1)
plt.xlim(0.5, max_x + 0.5)
plt.ylim(0, 1)
plt.legend(legend_list)
plt.tight_layout()
plt.show()