forked from onnx/onnxmltools
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
84 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import unittest | ||
import numpy as np | ||
|
||
|
||
class TestLightGBMIssue2025(unittest.TestCase): | ||
def test_issue_708(self): | ||
# https://github.com/onnx/onnxmltools/issues/708 | ||
|
||
import pprint | ||
from datetime import datetime, timedelta | ||
import pandas as pd | ||
from lightgbm import LGBMRegressor | ||
import onnx | ||
import onnxmltools | ||
import onnxruntime | ||
from skl2onnx.common.data_types import FloatTensorType | ||
|
||
end_date = datetime.now() | ||
start_date = end_date - timedelta(days=30) | ||
date_range = pd.date_range(start=start_date, end=end_date, freq="5min") | ||
df_timestamps = pd.DataFrame(index=date_range) | ||
N = len(df_timestamps) | ||
|
||
used = pd.Series([0] * N, index=date_range) | ||
used[(used.index.dayofweek <= 4) & (used.index.hour == 8)] = 1 | ||
used[(used.index.dayofweek <= 4) & (used.index.hour == 12)] = 2 | ||
used[(used.index.dayofweek <= 4) & (used.index.hour == 14)] = 3 | ||
|
||
y = pd.DataFrame( | ||
{ | ||
"y": used, | ||
}, | ||
index=date_range, | ||
) | ||
X = pd.DataFrame( | ||
{ | ||
"sin_day_of_week": np.sin(2 * np.pi * date_range.dayofweek / 7), | ||
"cos_day_of_week": np.cos(2 * np.pi * date_range.dayofweek / 7), | ||
"sin_hour_of_day": np.sin(2 * np.pi * date_range.hour / 24), | ||
"cos_hour_of_day": np.cos(2 * np.pi * date_range.hour / 24), | ||
}, | ||
index=date_range, | ||
) | ||
X.columns = [f"f{i}" for i in range(X.shape[1])] | ||
|
||
lgb_model = LGBMRegressor( | ||
objective="quantile", # Use quantile loss | ||
alpha=0.95, # Quantile for the loss (default is median: 0.5) | ||
n_estimators=1, # Number of boosting iterations | ||
max_depth=2, # Maximum tree depth | ||
) | ||
lgb_model.fit(X, y) | ||
|
||
init_types = [("float_input", FloatTensorType([None, X.shape[1]]))] | ||
|
||
onnx_model_lgmb = onnxmltools.convert_lightgbm( | ||
lgb_model, initial_types=init_types | ||
) | ||
onnx.save(onnx_model_lgmb, "test_issue_708.onnx") | ||
|
||
lgb_predictions = lgb_model.predict(X) | ||
|
||
lgbm_sess = onnxruntime.InferenceSession( | ||
onnx_model_lgmb.SerializeToString(), providers=["CPUExecutionProvider"] | ||
) | ||
loaded_lgb_predictions = lgbm_sess.run( | ||
output_names=["variable"], | ||
input_feed={"float_input": X.to_numpy().astype(np.float32)}, | ||
)[0] | ||
disc = [] | ||
for i, (features, x, y) in enumerate( | ||
zip( | ||
X.values.astype(np.float32), | ||
lgb_predictions, | ||
loaded_lgb_predictions.ravel(), | ||
) | ||
): | ||
if abs(x - y) > 1e-5: | ||
disc.append((i, features, x, np.float32(x), y)) | ||
assert not disc, f"Discrepancies: {pprint.pformat(disc)}" | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main(verbosity=2) |