-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtask_adapter.py
290 lines (252 loc) · 9.78 KB
/
task_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import sys
import os
import math
import logging
import random
import numpy as np
import transformers
from transformers import (
AutoConfig,
AutoTokenizer,
# DataCollatorForLanguageModeling,
Trainer,
set_seed,
AdapterTrainer,
# BertForMaskedLM,
# GPT2LMHeadModel
)
from transformers.adapters.configuration import AdapterConfig
from transformers.trainer_utils import get_last_checkpoint
import datasets
from datasets import load_from_disk,load_metric
from arguments_adapter import get_args
from dataset.multiple_choice import get_winobias,DataCollatorForMultipleChoiceAndTokenClassification
from model.bert_mc_mlm_adapter import BertForMultipleChoiceMaskedLM
from model.gpt2_mc_clm_adapter import GPT2ForMultipleChoiceLMHeadModel
logger = logging.getLogger(__name__)
model_args,data_args,training_args,adapter_args = get_args()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Helper function for reproducible behavior to set the seed in random, numpy, torch and/or tf (if installed).
# Load config and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name.")
# Set padding token.
if model_args.task_type=="causal_lm" or 'gpt2' in model_args.model_name_or_path:
tokenizer.pad_token = tokenizer.eos_token
config.pad_token_id = config.eos_token_id
# Load model
model_class = BertForMultipleChoiceMaskedLM if 'bert' in model_args.model_name_or_path else GPT2ForMultipleChoiceLMHeadModel
model = model_class.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
# Setup adapters
task_name = model_args.task_type # modified
# check if adapter already exists, otherwise add it
if task_name not in model.config.adapters:
# resolve the adapter config
adapter_config = AdapterConfig.load(
adapter_args.adapter_config,
# non_linearity=adapter_args.adapter_non_linearity,
reduction_factor=adapter_args.adapter_reduction_factor,
)
model.add_adapter(task_name, config=adapter_config)
# Freeze all model weights except of those of this adapter
model.train_adapter([task_name])
for param in model.cls.parameters() if config.model_type=='bert' else model.lm_head.parameters():
param.requires_grad = False
# Set the adapters to be used in every forward pass
model.set_active_adapters(task_name)
tunable_param = 0
frozen_param = 0
for name,param in model.named_parameters():
if param.requires_grad:
tunable_param += param.numel()
else:
frozen_param += param.numel()
print('tunable_param is {}, frozen_param is {}'.format(tunable_param,frozen_param))
# Load datasets
if model_args.task_type=='coref':
tokenized_datasets = get_winobias(model_args,data_args,training_args,config,tokenizer)
elif model_args.task_type=='nli':
pass
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = tokenized_datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
# if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = tokenized_datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
# Data collator
if model_args.task_type=="coref":
data_collator = DataCollatorForMultipleChoiceAndTokenClassification(
tokenizer=tokenizer,
# pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
)
winobias_metric = load_metric('f1')
def compute_metrics(eval_predictions):
# assume the models only output (loss,logits), then
# predictions= numpy typed logits~(bsz,n_choices),
# labels~(bsz) is extracted from the inputs according to trainer.label_names (specified by TrainingArguments.label_names
# or the input arguments of model.forward whose name contains 'label')
predictions, labels = eval_predictions
if isinstance(predictions, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
predictions = predictions[0]
predictions = np.argmin(predictions, axis=1) # (bsz)
results = winobias_metric.compute(predictions=predictions, references=labels)
return results # {'f1':float}
elif model_args.task_type=="nli":
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
# pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
)
# Training
if training_args.do_train:
trainer = AdapterTrainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset, # if training_args.do_train else None,
eval_dataset=eval_dataset, # if training_args.do_eval else None,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
# logger.info(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
# save to training_args.output_dir
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
# if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_eval:
logger.info("*** Test ***")
test_metrics = {}
tester_pro = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=None,
eval_dataset=tokenized_datasets["test_pro"],
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
test_metrics['f1_pro'] = tester_pro.evaluate()['eval_f1']
tester_anti = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=None,
eval_dataset=tokenized_datasets["test_anti"],
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
test_metrics['f1_anti'] = tester_anti.evaluate()['eval_f1']
test_metrics['diff'] = test_metrics['f1_pro']-test_metrics['f1_anti']
tester_anti.log_metrics("test", test_metrics)
tester_anti.save_metrics("test", test_metrics)